জটিল সংখ্যা ও জ্যামিতিক প্রতিরূপ
(1+i1−i)3\left(\frac{1+i}{1-i}\right)^{3}(1−i1+i)3 কে A+i B \mathrm{A}+i \mathrm{~B} A+i B আাকারে প্রকাশ করলে নিচের কোনটি সঠিক ?
0˙.2+i(−1)\dot{0} .2+\mathrm{i}(-1) 0˙.2+i(−1)
0˙.1+1i\dot{0} .1+ 1\mathrm{i}0˙.1+1i
0˙−i(−1)\dot{0} -\mathrm{i}(-1) 0˙−i(−1)
0+i(−1)\ {0} +\mathrm{i}(-1) 0+i(−1)
Step1.
1+i1−i⋅1+i1+i=(1+i)2(1−i)(1+i)(1−i)(1+i)=12−i2=1−(−1)=1+1=2 \begin{array}{l} \frac{1+i}{1-i} \cdot \frac{1+i}{1+i}=\frac{(1+i)^{2}}{(1-i)(1+i)} \\ (1-i)(1+i)=1^{2}-i^{2}=1-(-1)=1+1=2 \end{array} 1−i1+i⋅1+i1+i=(1−i)(1+i)(1+i)2(1−i)(1+i)=12−i2=1−(−1)=1+1=2
Now, (1+i)2=12+2i+i2=1+2i−1=2i (1+i)^{2}=1^{2}+2 i+i^{2}=1+2 i-1=2 i (1+i)2=12+2i+i2=1+2i−1=2i
So, the fraction simplifies, 2i2=i \frac{2 i}{2}=i 22i=i.
step-02. i3=i+i+i=i2⋅i=(−1)⋅i=−i \quad i ^{3}=i+i+i=i^{2} \cdot i=(-1) \cdot i=-i i3=i+i+i=i2⋅i=(−1)⋅i=−i
step-03. Expross in the form A+iB A+i B A+iB
the result of (1+i1−i)3 \left(\frac{1+i}{1-i}\right)^{3} (1−i1+i)3 simplifiers to −i -i −i can be written as 0−i 0-i 0−i or O+(−1)i O+(-1)i O+(−1)i.
Thus A=0 A=0 A=0 and B=−1 B=-1 B=−1 the correct option 0+i(−1) 0+i(-1) 0+i(−1)
The roots of ax2+bx+c=0a{x^2} + bx + c = 0ax2+bx+c=0 ,where a≠0a \ne 0a=0 ,b,c are non-real complex and
a+c<ba + c < ba+c<b , then
If (x2−2)+(y+3)i=7+4i(x^{2}-2)+(y+3)i=7+4i(x2−2)+(y+3)i=7+4i then x and y are
Let P(eiθ1)P(e^{i\theta_1})P(eiθ1), Q(eiθ2)Q(e^{i\theta_2})Q(eiθ2) and R(eiθ3)R(e^{i\theta_3})R(eiθ3) be the vertices of a triangle PQR in the Argand Plane. The orthocenter of the triangle PQR is
If (2−i)×(a−bi)=2+9i(2 - i)\times(a - bi) = 2 + 9i(2−i)×(a−bi)=2+9i, where i is the imaginary unit and a and b are real numbers, then a equals