লিমিট

Let f(x)f(x) be differentiable function such that f(x+y1xy)=f(x)+f(y)xf\left(\dfrac{x+y}{1-xy}\right)=f(x)+f(y) \forall x and yy. If ltx0f(x);x=13\underset { x\rightarrow 0 }{ lt } \dfrac { f\left( x \right) ; }{ x } =\dfrac { 1 }{ 3 } then f(1)f(1) equals& ;

হানি নাটস

We have,

f(x+y1xy)=f(x)+f(y)x2yf\left( {\dfrac{{x + y}}{{1 - xy}}} \right) = f\left( x \right) + f\left( y \right)\,\,\,\forall {x^2}y
f(x)=ktan1(x) \Rightarrow f\left( x \right) = k{\tan ^{ - 1}}\left( x \right)
limx0ktan1xx=13\mathop {\lim }\limits_{x \to 0} \dfrac{{k{{\tan }^{ - 1}}x}}{x} = \dfrac{1}{3}
k=13k = \dfrac{1}{3}
f(x)=13tan1xf\left( x \right) = \dfrac{1}{3}{\tan ^{ - 1}}x
f(1)=112f\left( 1 \right) = \dfrac{1 }{{12}}

Hence, this is the answer.

লিমিট টপিকের ওপরে পরীক্ষা দাও