অন্বয় এবং ডোমেন ও রেঞ্জ

Let f(x)=x24x2+4f(x)=\dfrac{x^{2}-4}{x^{2}+4} for x>2|x|>2, then the function f:(,2][2,](1,1)f:(-\infty, -2]\cup [2, \infty]\rightarrow (-1, 1) is-

কাজু বাদাম

 Domain x>2x(,2][2,) Range [1,1] \begin{array}{l}\text { Domain } \rightarrow|x|>2 \\ \quad \Rightarrow x \in(-\infty, 2] \cup[2, \infty) \\ \text { Range } \rightarrow[-1,1]\end{array}

f(x)=(x2+4)(2x)(x24)(2x)(x2+4)=2x3+8x2x3+8x(x2+4)2=16x(x2+4)2 \begin{aligned} f^{\prime}(x) & =\frac{\left(x^{2}+4\right)(2 x)-\left(x^{2}-4\right)(2 x)}{\left(x^{2}+4\right)} \\ & =\frac{2 x^{3}+8 x-2 x^{3}+8 x}{\left(x^{2}+4\right)^{2}} \\ & =\frac{16 x}{\left(x^{2}+4\right)^{2}} \end{aligned}

\therefore one one into.

অন্বয় এবং ডোমেন ও রেঞ্জ টপিকের ওপরে পরীক্ষা দাও