নির্দিষ্ট যোগজ

Let I=π/4π/3sinxxdxI=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x } }{ x } } dx. Then?

হানি নাটস

I=π4π3sinxxdxI=\displaystyle \int^{\tfrac{\pi}{3}}_{\tfrac{\pi}{4}}\dfrac{sinx}{x}dx

sinxx\dfrac{sinx}{x} is a decreasing function in given interval

difference of limits =π3π4=π12=\dfrac{\pi}{3}-\dfrac{\pi}{4}=\dfrac{\pi}{12}

so, π12sinπ3π3Iπ12sinπ4π4\dfrac{\pi}{12}\cdot\dfrac{sin\dfrac{\pi}{3}}{\dfrac{\pi}{3}} \le I \le \dfrac{\pi}{12} \cdot\dfrac{sin\dfrac{\pi}{4}}{\dfrac{\pi}{4}}

38I26\dfrac{\sqrt3}{8} \leq I \leq \dfrac{\sqrt2}{6}

নির্দিষ্ট যোগজ টপিকের ওপরে পরীক্ষা দাও