নির্দিষ্ট যোগজ
Let I=∫π/4π/3sinxxdxI=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x } }{ x } } dxI=∫π/4π/3xsinxdx. Then?
12≤I≤1\cfrac { 1 }{ 2 } \le I\le 1\quad 21≤I≤1
4≤I≤2304\le I\le 2\sqrt { 30 } 4≤I≤230
38≤I≤26\cfrac { \sqrt { 3 } }{ 8 } \le I\le \cfrac { \sqrt { 2 } }{ 6 } 83≤I≤62
1≤I≤2321\le I\le \cfrac { 2\sqrt { 3 } }{ \sqrt { 2 } } 1≤I≤223
I=∫π4π3sinxxdxI=\displaystyle \int^{\tfrac{\pi}{3}}_{\tfrac{\pi}{4}}\dfrac{sinx}{x}dxI=∫4π3πxsinxdx
sinxx\dfrac{sinx}{x}xsinx is a decreasing function in given interval
difference of limits =π3−π4=π12=\dfrac{\pi}{3}-\dfrac{\pi}{4}=\dfrac{\pi}{12}=3π−4π=12π
so, π12⋅sinπ3π3≤I≤π12⋅sinπ4π4\dfrac{\pi}{12}\cdot\dfrac{sin\dfrac{\pi}{3}}{\dfrac{\pi}{3}} \le I \le \dfrac{\pi}{12} \cdot\dfrac{sin\dfrac{\pi}{4}}{\dfrac{\pi}{4}}12π⋅3πsin3π≤I≤12π⋅4πsin4π
38≤I≤26\dfrac{\sqrt3}{8} \leq I \leq \dfrac{\sqrt2}{6}83≤I≤62
The value of ∫−π/2199π/2(1+cos2x)dx\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx∫−π/2199π/2(1+cos2x)dx is?
∫0π6sin2xcosxdx= \int_{0}^{\frac{\pi}{6}} \sin ^{2} x \cos x d x= ∫06πsin2xcosxdx= কত ?
f(x)= {x+1forx=0 \left \lbrace \begin{matrix} x + 1 & f{\quad\text{or}\quad} & x & = & 0 \end{matrix} \right . {x+1forx=0 হলে-
∫−1−12f(x)dx=18 \int_{- 1}^{- \frac{1}{2}} f{\left ( x \right )} dx = \frac{1}{8} ∫−1−21f(x)dx=81
∫01f(x)dx=0 \int_{0}^{1} f{\left ( x \right )} dx = 0 ∫01f(x)dx=0
f(−1)=1 f{\left ( - 1 \right )} = 1 f(−1)=1
নিচের কোনটি সঠিক?
The value of ;∫0π/4secx(secx+tanx)2dx\displaystyle \int_{0}^{\pi /4}\frac{\sec x}{\left ( \sec x+\tan x \right )^{2}}dx∫0π/4(secx+tanx)2secxdx is& ;