জটিল সংখ্যা ও জ্যামিতিক প্রতিরূপ

Let z=x+iyz = x + iy, where xx and yy are real. The points (x,y)(x, y) in the XYX-Y plane for which z+izi\dfrac {z + i}{z - i} is purely imaginary lie on

হানি নাটস

Let z=x+iyz = x + iy

z+i(zi)=x+iy+ix+iyi\therefore \dfrac {z + i}{(z - i)}=\dfrac{x+iy+i}{x+iy-i}

=(x+i(y+1))(xi(1y))×(x+i(1y))(x+i(1y))= \dfrac {(x + i(y + 1))}{(x - i(1 - y))}\times \dfrac {(x + i(1 - y))}{(x + i(1 - y))}
=x2+(y21)+2ixx2+(1y)2=\dfrac {x^{2} + (y^{2} - 1)+2ix}{x^{2} + (1 - y)^{2}}

Since, z+izi\dfrac{z+i}{z-i} should be purely imaginary
Re(z+izi)=0\therefore Re\left (\dfrac {z + i}{z - i}\right ) = 0
    x2+(y21)x2+(1y)2=0\implies \dfrac {x^{2} + (y^{2} - 1)}{x^{2} + (1 - y)^{2}} = 0
    x2+y21=0\implies x^{2}+y^{2}-1=0
    x2+y2=1\implies x^{2} + y^{2} = 1 which is the equation of a circle
Hence, (x,y)(x,y) lie on a circle.

জটিল সংখ্যা ও জ্যামিতিক প্রতিরূপ টপিকের ওপরে পরীক্ষা দাও