অন্বয় এবং ডোমেন ও রেঞ্জ

Let f(x)=xx1+xx2f(x)=\left | x-x_{1} \right |+\left | x-x_{2} \right | where x1 and x2x_{1}~ and~ x_{2} are distinct  real numbers. Then the number of points at which f(x) is minimum is:

কাজু বাদাম

\therefore Here x1<x2 x_{1}<x_2

x1<x2  f(x)=x1x+x2x=x1+x22x \begin{aligned} x_{1}<x_2 ~~ f(x) & =x_{1}-x+x_{2}-x \\ & =x_{1}+x_{2}-2 x\end{aligned}

x1<x<x2 x_{1} <x <x_{2} \rightarrow f(x)=xx1+x2x=x2x1 \begin{aligned} f(x) & =x-x_{1}+x_{2}-x =x_{2}-x_{1}\end{aligned}

x<x2f(x)=2xx1x2x1<x<x2 x<x_{2} \rightarrow f(x)=2 x-x_{1}-x_{2} \\ x_{1}<x<x_2

[x1,x2] \left[x_{1}, x_{2}\right] \rightarrow Hence, There have more than 3 number of points at which f(x) f(x) is minimum.

অন্বয় এবং ডোমেন ও রেঞ্জ টপিকের ওপরে পরীক্ষা দাও