লিমিট
limx→01x(1+x−1−x)=? \lim_{x → 0} \frac{1}{x} \left ( \sqrt{1 + x} - \sqrt{1 - x} \right ) = ? limx→0x1(1+x−1−x)=?
1
3
2
-1
limx→01x{1+x−1−x}=11[limx→0a+x−a−xx=1a]=1 \begin{array}{l}\text { } \lim _{x \rightarrow 0} \frac{1}{x}\{\sqrt{1+x}-\sqrt{1-x}\} \\ =\frac{1}{\sqrt{1}}\left[\lim _{x \rightarrow 0} \frac{\sqrt{a+x}-\sqrt{a-x}}{x}=\frac{1}{\sqrt{a}}\right]=1\end{array} limx→0x1{1+x−1−x}=11[limx→0xa+x−a−x=a1]=1
0. limx→0(1+5x)13x \lim_{x \to 0} \left ( 1 + 5 x \right )^{\frac{1}{3 x}} limx→0(1+5x)3x1 এর মান নিচের কোনটি ?
limx→0(1−cos2x)sin5xx2sin3x=?\displaystyle\lim_{x\rightarrow 0}\dfrac{(1-\cos 2x)\sin 5x}{x^2\sin 3x}=?x→0limx2sin3x(1−cos2x)sin5x=?
limx→π/2sinx−(sinx)sinx1−sinx+Insinx\displaystyle\lim_{x\to \pi/2} \dfrac{sinx-(sinx)^{sin x}}{1-sin x + In sin x}x→π/2lim1−sinx+Insinxsinx−(sinx)sinx is equal to-
The values of limn→∞n5+24−n2+13n4+25−n3+12\displaystyle\lim_{n\rightarrow \infty}\dfrac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt[2]{n^3+1}}n→∞lim5n4+2−2n3+14n5+2−3n2+1 is?