লিমিট

  limx0sinxloge(excosx)xsinx \lim_{x → 0} \frac{\sin{x} - \log_{e}{\left ( e^{x} \cos{x} \right )}}{x \sin{x}} এর মান কোনটি? 

KUET 15-16

limx0sinxloge(excosx)xsinx=limx0sinxxloge(cosx)xsinx \lim _{x \rightarrow 0} \frac{\sin x-\log _{e}\left(e^{x} \cos x\right)}{x \sin x}=\lim _{x \rightarrow 0} \frac{\sin x-x-\log _{e}(\cos x)}{x \sin x}

Using L' Hospital' s law, limx0cosx1+tanxsinx+xcosx;[00]=limx0sinx+sec2xcosx+cosxxsinx=11+1=12 \lim _{x \rightarrow 0} \frac{\cos x-1+\tan x}{\sin x+x \cos x} ;\left[\frac{0}{0}\right]=\lim _{x \rightarrow 0} \frac{-\sin x+\sec ^{2} x}{\cos x+\cos x-x \sin x}=\frac{1}{1+1}=\frac{1}{2}

লিমিট টপিকের ওপরে পরীক্ষা দাও