পরাবৃত্ত
y2=20x \mathrm{y}^{2}=20 \mathrm{x} y2=20x পরাবৃত্তের যে জ্যা (3,4) (3,4) (3,4) বিন্দুতে সমদ্বিখন্ডিত হয় তার সমীকরণ কোনটি?
10x+14=4y 10 x+14=4 \mathrm{y} 10x+14=4y
5y=12x+9 5 y=12 x+9 5y=12x+9
12x=4+5y 12 x=4+5 y 12x=4+5y
4y−30=10x 4 \mathrm{y}-30=10 \mathrm{x} 4y−30=10x
yy1=2p(x+x1) y y_{1}=2 p\left(x+x_{1}\right) yy1=2p(x+x1)
Substituting (x1,y1)=(3,4) \left(x_{1}, y_{1}\right)=(3,4) (x1,y1)=(3,4) :
4y=2(5)(x+3)4y=10x+3010x−4y+30=0 \begin{array}{c} 4 y=2(5)(x+3) \\ 4 y=10 x+30 \\ 10 x-4 y+30=0 \end{array} 4y=2(5)(x+3)4y=10x+3010x−4y+30=0
Final Answer:
10x−4y+30=0 10 x-4 y+30=0 10x−4y+30=0
যদি y = 3x+1 রেখাটি y2= 4ax পরাবৃত্তকে স্পর্শ করে তবে উপকেন্দ্রিক লম্বের দৈর্ঘ্যের মান কত?
এমন একটি পরাবৃত্তের সমীকরণ নির্ণয় কর যার শীর্ষবিন্দু (4. -3), উপকেন্দ্রিক লম্বের দৈর্ঘ্য 4 এবং যার অক্ষ, x-অক্ষের সমান্তরাল।
5y2-2x=0 পরাবৃত্তের উপকেন্দ্র কোনটি?
x2 + 4x + 2y = 0 পরাবৃত্তের শীর্ষবিন্দু কোনটি?