সমীকরণ সমাধান
sin4θ=cos3θ+sin2θ \sin{4} \theta = \cos{3} \theta + \sin{2} \theta sin4θ=cos3θ+sin2θ হলে θ \theta θ এর মান নিচের কোনটি?
দেওয়া আ
sin4θ−sin2θ=cos3θ⇒2sin2θ2cos6θ2=cos3θ⇒2sinθcos3θ=cos3θ⇒2sinθcos3θ−cos3θ=0⇒(cos3θ)(2sinθ−1)=0 \begin{aligned} & \sin 4 \theta-\sin 2 \theta=\cos 3 \theta \\ \Rightarrow & 2 \sin \frac{2 \theta}{2} \cos \frac{6 \theta}{2}=\cos 3 \theta \\ \Rightarrow & 2 \sin \theta \cos 3 \theta=\cos 3 \theta \\ \Rightarrow & 2 \sin \theta \cos 3 \theta-\cos 3 \theta=0 \\ \Rightarrow & (\cos 3 \theta)(2 \sin \theta-1)=0\end{aligned} ⇒⇒⇒⇒sin4θ−sin2θ=cos3θ2sin22θcos26θ=cos3θ2sinθcos3θ=cos3θ2sinθcos3θ−cos3θ=0(cos3θ)(2sinθ−1)=0
if, cos3θ=0⇒cos3θ=cosπ2⇒3θ=2nπ±π/2θ=2nπ3±π6 If, 2sinθ−1=0⇒sinθ=12=sinπ6∴θ=2nπ3±π6∴θ=nπ±(−1)n⋅π6;n∈Zn∈Z \begin{array}{l}\text { if, } \cos 3 \theta=0 \\ \Rightarrow \cos 3\theta =\cos \frac{\pi}{2} \\ \Rightarrow 3\theta =2 n \pi \pm \pi / 2 \\ \theta=\frac{2n\pi}{3} \pm \frac{\pi}{6}\\ \text { If, } \\ 2 \sin \theta-1=0 \\ \Rightarrow \sin \theta=\frac{1}{2}=\sin \frac{\pi}{6} \\ \therefore \theta=\frac{2 n \pi}{3} \pm \frac{\pi}{6} \\ \therefore \theta=n \pi \pm(-1)^{n} \cdot \frac{\pi}{6} ; n \in \mathbb{Z} \\ n \in Z \\\end{array} if, cos3θ=0⇒cos3θ=cos2π⇒3θ=2nπ±π/2θ=32nπ±6π If, 2sinθ−1=0⇒sinθ=21=sin6π∴θ=32nπ±6π∴θ=nπ±(−1)n⋅6π;n∈Zn∈Z
f(x)=sinx \mathrm{f}(x)=\sin x f(x)=sinx এবং g(x)=cosx g(x)=\cos x g(x)=cosx.
2tan−1(cosx)=tan−1(2cosecx) 2 \tan^{- 1}{\left ( \cos{x} \right )} = \tan^{- 1}{\left ( 2 \cos{e} c x \right )} 2tan−1(cosx)=tan−1(2cosecx) এর সমাধান -
h(x)=sin−1x \mathrm{h}(\mathrm{x})=\sin ^{-1} \mathrm{x} h(x)=sin−1x এবং p(x)=cosx \mathrm{p}(\mathrm{x})=\cos \mathrm{x} p(x)=cosx
n একটি পূর্ণসংখ্যা হলে sin2θ=12 \sin{2} \theta = \frac{1}{2} sin2θ=21 সমীকরণের সাধারণ সমাধান কোনটি?