ম্যাট্রিক্স এর যোগ, বিয়োগ ও গুণ
p=[1−103]p=\begin{bmatrix} 1 & - 1 \\ 0 & 3 \end{bmatrix}p=[10−13] হলে P2−2IP^{2}-2IP2−2I এর মান হয়—
[1−407]\begin{bmatrix} 1 & - 4 \\ 0 & 7 \end{bmatrix}[10−47]
[−1−407]\begin{bmatrix} - 1 & - 4 \\ 0 & 7 \end{bmatrix}[−10−47]
P=[1−103]P2=P×P=[1−103][1−103] \begin{array}{l}P=\left[\begin{array}{cc}1 & -1 \\ 0 & 3\end{array}\right] \\ P^{2}=P \times P=\left[\begin{array}{cc}1 & -1 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 3\end{array}\right]\end{array} P=[10−13]P2=P×P=[10−13][10−13]
=[1−1−30−0+9]=[1−400] =\left[\begin{array}{ll}1 & -1-3 \\ 0 & -0+9\end{array}\right]=\left[\begin{array}{cc}1 & -4 \\ 0 & 0\end{array}\right] =[10−1−3−0+9]=[10−40]
2I=[2002]P2−2I=[1−409]−[2002]=[−1−407] \begin{array}{l}2 I=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right] \\ P^{2}-2 I=\left[\begin{array}{cc}1 & -4 \\ 0 & 9\end{array}\right]-\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}-1 & -4 \\ 0 & 7\end{array}\right]\end{array} 2I=[2002]P2−2I=[10−49]−[2002]=[−10−47]
A=[21−1] A=\left[\begin{array}{lll}2 & 1 & -1\end{array}\right] A=[21−1] এবং B=[203] B=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right] B=203 হলে, BA= \mathrm{BA}= BA= ?
A=[22−1303232],B=[x1x2x3] \mathrm{A}=\left[\begin{array}{ccc}2 & 2 & -1 \\ 3 & 0 & 3 \\ 2 & 3 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right] A=232203−132,B=x1x2x3 এবং C=[5711] \mathrm{C}=\left[\begin{array}{c}5 \\ 7 \\ 11\end{array}\right] C=5711
BA এর মান নির্ণয় কর, যদি A=(1i−i1)&B=(i−1−1−i) A=\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right) \& B=\left(\begin{array}{cc}i & -1 \\ -1 & -i\end{array}\right) A=(1−ii1)&B=(i−1−1−i) এবং i=−1 i=\sqrt{-1} i=−1 হয়।
A=[1234],B=[1001] A = \left [ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right ] , B = \left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] A=[1324],B=[1001]
AT – BT = কত?