বিপরীত ত্রিকোণমিতিক ফাংশনের যোগ বিয়োগ
sin−1(2x)+sin−1x=π3 \sin ^{-1}(2 x)+\sin ^{-1} x= \frac{\pi}{3}sin−1(2x)+sin−1x=3π Here are the other options randomized with the correct answer for the given MCQ question:
both c and d
14\frac{1}{4}41
328\sqrt{\frac{3}{28}}283
−328-\sqrt{\frac{3}{28}}−283
Solve:⇒sin−1(2x)=π3−sin−1x⇒2x=sin(π3−sin−1x)⇒2x=sinπ3cos(sin−1x)−cosπ3sin(sin−1x)⇒2x=32cos(cos−11−x2)−12⋅x⇒4x=31−x2)−x⇒5x=31−x2)−x⇒25x2=3(1−x2)⇒28x2=3⇒x=±328∴x=−328 dose not comply the equation ∴x=328\begin{array}{l}\Rightarrow \sin ^{-1}(2 x)=\frac{\pi}{3}-\sin ^{-1} x \\\Rightarrow 2 x=\sin \left(\frac{\pi}{3}-\sin ^{-1} x\right) \\\Rightarrow 2 x=\sin \frac{\pi}{3} \cos \left(\sin ^{-1} x\right)-\cos \frac{\pi}{3} \sin \left(\sin ^{-1} x\right) \\\Rightarrow 2 x=\frac{\sqrt{3}}{2} \cos \left(\cos ^{-1} \sqrt{1-x^{2}}\right)-\frac{1}{2} \cdot x \\\left.\Rightarrow 4 x=\sqrt{3} \sqrt{1-x^{2}}\right)-x \\\left.\Rightarrow 5 x=\sqrt{3} \sqrt{1-x^{2}}\right)-x \Rightarrow 25 x^{2}=3\left(1-x^{2}\right) \\\Rightarrow 28 x^{2}=3 \Rightarrow x= \pm \sqrt{\frac{3}{28}} \\\therefore x=-\sqrt{\frac{3}{28}} \text { dose not comply the equation } \\\therefore x=\sqrt{\frac{3}{28}}\end{array}⇒sin−1(2x)=3π−sin−1x⇒2x=sin(3π−sin−1x)⇒2x=sin3πcos(sin−1x)−cos3πsin(sin−1x)⇒2x=23cos(cos−11−x2)−21⋅x⇒4x=31−x2)−x⇒5x=31−x2)−x⇒25x2=3(1−x2)⇒28x2=3⇒x=±283∴x=−283 dose not comply the equation ∴x=283
উদ্দীপক-১: f(x)=cosxf(x)=\cos xf(x)=cosx
উদ্দীপক-2: cot−1(1x)+12sec−1(1+y21−y2)+12cosec−1(1+z22z)=π\cot ^{-1}\left(\frac{1}{x}\right)+\frac{1}{2} \sec ^{-1}\left(\frac{1+y^{2}}{1-y^{2}}\right)+\frac{1}{2} \operatorname{cosec}^{-1}\left(\frac{1+z^{2}}{2 z}\right)=\picot−1(x1)+21sec−1(1−y21+y2)+21cosec−1(2z1+z2)=π.
tan−1x+tan−1y=?\tan ^{-1} x+\tan ^{-1} y = ? tan−1x+tan−1y=?
f(x)=cot(π2−x) এবং g(x)=sin−1x f(x)=\cot \left(\frac{\pi}{2}-x\right) \text { এবং } g(x)=\sin ^{-1} x f(x)=cot(2π−x) এবং g(x)=sin−1x
f(x)=sin−1p+sin−1q+sin−1rA=cosx−cos2xR=1−cosx \begin{array}{l}f(x)=\sin ^{-1} p+\sin ^{-1} q+\sin ^{-1} r \\ A=\cos x-\cos 2 x \\ R=1-\cos x\end{array} f(x)=sin−1p+sin−1q+sin−1rA=cosx−cos2xR=1−cosx