বিপরীত ত্রিকোণমিতিক ফাংশনের যোগ বিয়োগ
sin2(cos−1(12)) \sin^{2}{\left ( \cos^{- 1}{\left ( \frac{1}{2} \right )} \right )} sin2(cos−1(21)) এর মান কত?
1/4
1/2
3/4
1
We know,
sin²x=1-cos²x
sin2(cos−112)=1−cos2(cos−112)=1−14=34∴ \begin{array}{l}\text { }{ }^{} \sin ^{2}\left(\cos ^{-1} \frac{1}{2}\right)=1-\cos ^{2}\left(\cos ^{-1} \frac{1}{2}\right) \\ =1-\frac{1}{4}=\frac{3}{4} \therefore \text { } \quad \text { }\end{array} sin2(cos−121)=1−cos2(cos−121)=1−41=43∴
উদ্দীপক-১: f(x)=cosxf(x)=\cos xf(x)=cosx
উদ্দীপক-2: cot−1(1x)+12sec−1(1+y21−y2)+12cosec−1(1+z22z)=π\cot ^{-1}\left(\frac{1}{x}\right)+\frac{1}{2} \sec ^{-1}\left(\frac{1+y^{2}}{1-y^{2}}\right)+\frac{1}{2} \operatorname{cosec}^{-1}\left(\frac{1+z^{2}}{2 z}\right)=\picot−1(x1)+21sec−1(1−y21+y2)+21cosec−1(2z1+z2)=π.
costan−1sincot−1(x)=? \cos \tan ^{-1} \sin \cot ^{-1}(\mathrm{x})=? costan−1sincot−1(x)=?
tan-12+cot-11/3 এর মান কোনটি?
f(x)=cot(π2−x) এবং g(x)=sin−1x f(x)=\cot \left(\frac{\pi}{2}-x\right) \text { এবং } g(x)=\sin ^{-1} x f(x)=cot(2π−x) এবং g(x)=sin−1x