মান নির্ণয়

sinA=12,sinB=13\sin A=\frac{1}{\sqrt{2}},\sin B=\frac{1}{\sqrt{3}}হলে tan(A+B)=\tan(A+B)=কত?

SB 19

cosA=12 \therefore \operatorname{cos} A=\frac{1}{\sqrt{2}}

cosB=23 \cos B=\frac{\sqrt{2}}{\sqrt{3}}

tan(A+B)=tanA+tanB1tanAtanB \therefore \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}

=sinAcosA+sinBcosB1sinAcosAsinBcosB =\frac{\frac{\sin A}{\operatorname{cos} A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}}

=1+121112=2+121 \begin{array}{l}=\frac{1+\frac{1}{\sqrt{2}}}{1-1 \cdot \frac{1}{\sqrt{2}}} \\ =\frac{\sqrt{2}+1}{\sqrt{2}-1}\end{array}

মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও