সমীকরণ সমাধান
sinx.sin2x.sin3x=34 \sin{x} . \sin{2} x . \sin{3} x = \frac{\sqrt{3}}{4} sinx.sin2x.sin3x=43 হলে X এর মান কোনটি?
30°
60°
75°
90°
sinx⋅sin2x⋅sin3xx=30∘,sin30∘⋅sin60∘⋅sin90∘=12⋅32⋅1=34 \begin{aligned} \text { } & \sin x \cdot \sin 2 x \cdot \sin 3 x \\ & x=30^{\circ}, \\ & \sin 30^{\circ} \cdot \sin 60^{\circ} \cdot \sin 90^{\circ} \\ = & \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot 1 \\ & =\frac{\sqrt{3}}{4} \\ & \text { }\end{aligned} =sinx⋅sin2x⋅sin3xx=30∘,sin30∘⋅sin60∘⋅sin90∘21⋅23⋅1=43
Solve by option test. If x=30°, LHS=RHS
f(x)=sinx \mathrm{f}(x)=\sin x f(x)=sinx এবং g(x)=cosx g(x)=\cos x g(x)=cosx.
h(x)=sin−1x \mathrm{h}(\mathrm{x})=\sin ^{-1} \mathrm{x} h(x)=sin−1x এবং p(x)=cosx \mathrm{p}(\mathrm{x})=\cos \mathrm{x} p(x)=cosx
দৃশ্যকল্প-২: 4cosxcos2xcos3x=1 4 \cos x \cos 2 x \cos 3 x=1 4cosxcos2xcos3x=1
g(x)=psin−1x;h(x)=cosx g(x)=p \sin ^{-1} x ; h(x)=\cos x g(x)=psin−1x;h(x)=cosx