ক্ষেত্রফল নির্ণয়

The area enclosed between the curves x2=y{x}^{2}=y and y2=x{y}^{2}=x is equal to

হানি নাটস

\because Curves x2=y{x}^{2}=y and y2=x{y}^{2}=x intersect at (0,0)\left(0,0\right) and (1,1)\left(1,1\right).

\thereforeRequired Area=01(xx2)dx=\int_{0}^{1}{\left(\sqrt{x}-{x}^{2}\right)dx}

; & ;                       =[x12+112+1x33]01=\left[\dfrac{{x}^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\dfrac{{x}^{3}}{3}\right]_{0}^{1}

                         =2313=13=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}.sq.unit.

Also, both curves x2=y{x}^{2}=y and y2=x{y}^{2}=x are symmetrical about y=xy=x

\therefore Required Area=201(xx2)dx=2\int_{0}^{1}{\left(x-{x}^{2}\right)dx}

Option(c):x2yx\left(c\right):{x}^{2}\le y\le \left|x\right|

y=x2,y=xy={x}^{2},y=\left|x\right| point of intersection is (0,0)\left(0,0\right) and (1,1)\left(1,1\right).

\therefore Required Area=201(xx2)dx=2\int_{0}^{1}{\left(x-{x}^{2}\right)dx}

                               =2[x22x33]01=2\left[\dfrac{{x}^{2}}{2}-\dfrac{{x}^{3}}{3}\right]_{0}^{1}

                             =2(1213)=2\left(\dfrac{1}{2}-\dfrac{1}{3}\right)

                             =123=13=1-\dfrac{2}{3}=\dfrac{1}{3}.sq.unit

ক্ষেত্রফল নির্ণয় টপিকের ওপরে পরীক্ষা দাও