নির্ণায়ক, ব্যতিক্রমী ও অব্যতিক্রমী ম্যাট্রিক্স
The determinants of the reverse identity matrics are defined as follow
∣I1∣=∣1∣=+1,∣I2∣=∣0110∣=−∣I3∣=∣001010100∣ \left|I_{1}\right|=|1|=+1,\left|I_{2}\right|=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-\left|I_{3}\right|=\left|\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right| ∣I1∣=∣1∣=+1,∣I2∣=0110=−∣I3∣=001010100
+1
0
-1
None of them
If the points (2,5),(4,6)(2,5),(4,6)(2,5),(4,6) and (a,a)(a,a)(a,a) are collinear, then the value of aaa is equal to
∣a000b000c∣=\begin{vmatrix}a&0&0\\0&b&0\\0&0&c\end{vmatrix}=a000b000c= কত?
Three digits numbers 7x,36y 7x,36y7x,36y and 12z12z12z where x,y,zx , y , zx,y,z are integers from 000 to 9,9 ,9, are divisible by a fixed constant k.k.k. Then the determinant ∣x3176z1y2∣\left| \begin{array} { l l l } { x } & { 3 } & { 1 } \\ { 7 } & { 6 } & { z } \\ { 1 } & { y } & { 2 } \end{array} \right|x7136y1z2 +48\ +48 +48 must be divisible by
K \mathrm{K} K এর কোন মানের জন্য [K+133K−1] \left[\begin{array}{cc}K+1 & 3 \\ 3 & K-1\end{array}\right] [K+133K−1] ম্যাট্রিক্সটি বিপরীতযোগ্য নয়?