বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত
The equation of the circle having normal at (3,3)(3, 3)(3,3) as y=xy = xy=x and passing through (2,2)(2, 2)(2,2) is:
x2+y2−3x−7y+12=0x^2 + y^2 - 3x - 7y + 12 = 0x2+y2−3x−7y+12=0
x2+y2−4x−6y+12=0x^2 + y^2 -4x - 6y + 12 = 0x2+y2−4x−6y+12=0
x2+y2−6x−4y+12=0x^2 + y^2 - 6x - 4y + 12 = 0x2+y2−6x−4y+12=0
x2+y2−5x−5y+12=0x^2 + y^2 - 5x - 5y + 12 = 0x2+y2−5x−5y+12=0
x2+y2+2gx+2fy+c=02x+2ydydx+2g+2fdydx=0.dydx=−y−xy+f.dydxat(3,3).⇒dydx=−y−33+fSlopeofnormalatthispoint=1⇒−(g+3)f+3(1)=−1⇒g+3=f+3.⇒g=f.⇒x2+y2+2gx+2fy+c=0Circlepassesthrough(3,3)&(2,2).⇒g+g+bg+bg+c=0⇒12g=−18−c.⇒4+4+4g+4g+c=0.8g=−8−c.−12g=−18−c−4g=10g=−52=f.C=−8(g+1)=−8(−52+1)=−8×−32=+12∴Equation:x2+y2−5x−5y+12=0.Ans.{ x }^{ 2 }+y^{ 2 }+2gx+2fy+c=0\\ 2x+2y\cfrac { dy }{ dx } +2g+2f\cfrac { dy }{ dx } =0.\\ \cfrac { dy }{ dx } =\cfrac { -y-x }{ y+f. } \\ \cfrac { dy }{ dx } \quad at\quad (3,3).\\ \Rightarrow \cfrac { dy }{ dx } =\cfrac { -y-3 }{ 3+f } \\ Slope\quad of\quad normal\quad at\quad this\quad point\quad =1\\ \Rightarrow -\cfrac { (g+3) }{ f+3 } (1)\quad =-1\\ \Rightarrow g+3=f+3.\\ \Rightarrow g=f.\\ \Rightarrow { x }^{ 2 }+y^{ 2 }+2gx+2fy+c=0\\ Circle\quad passes\quad through\quad (3,3)\& (2,2).\\ \Rightarrow g+g+bg+bg+c=0\\ \Rightarrow 12g=-18-c.\\ \Rightarrow 4+4+4g+4g+c=0.\\ 8g=-8-c.\\ -12g=-18-c\\ -4g=10\\ g=\cfrac { -5 }{ 2 } =f.\\ C=-8(g+1)\\ =-8(\cfrac { -5 }{ 2 } +1)\\ =-8\times \cfrac { -3 }{ 2 } \\ =+12\\ \therefore \quad Equation\quad :\\ { x }^{ 2 }+y^{ 2 }-5x-5y+12=0.\\ Ans.x2+y2+2gx+2fy+c=02x+2ydxdy+2g+2fdxdy=0.dxdy=y+f.−y−xdxdyat(3,3).⇒dxdy=3+f−y−3Slopeofnormalatthispoint=1⇒−f+3(g+3)(1)=−1⇒g+3=f+3.⇒g=f.⇒x2+y2+2gx+2fy+c=0Circlepassesthrough(3,3)&(2,2).⇒g+g+bg+bg+c=0⇒12g=−18−c.⇒4+4+4g+4g+c=0.8g=−8−c.−12g=−18−c−4g=10g=2−5=f.C=−8(g+1)=−8(2−5+1)=−8×2−3=+12∴Equation:x2+y2−5x−5y+12=0.Ans.
Equation of a circle whose centre is in III quadrant as (α, β)\left(\alpha,\ \beta\right)(α, β) and touches x−x-x−axis will be:
x2+y2+ay=0 x^{2}+y^{2}+a y=0 x2+y2+ay=0 এর পোলার সমীকরণ কোনটি?
A circle has radius 333 units and its centre lies on the line y=x−1y=x-1y=x−1. Then the equation of this circle if it passes through the point (7,3)(7, 3)(7,3), is?
r2−2rcosθ−2rsinθ−5=0 r^{2} - 2 r \cos{\theta} - 2 r \sin{\theta} - 5 = 0 r2−2rcosθ−2rsinθ−5=0 বৃত্তের কেন্দ্র নিচের কোনটি ?