বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত

The equation of the circle having normal at (3,3)(3, 3) as y=xy = x and passing through (2,2)(2, 2) is:

হানি নাটস

x2+y2+2gx+2fy+c=02x+2ydydx+2g+2fdydx=0.dydx=yxy+f.dydxat(3,3).dydx=y33+fSlopeofnormalatthispoint=1(g+3)f+3(1)=1g+3=f+3.g=f.x2+y2+2gx+2fy+c=0Circlepassesthrough(3,3)&(2,2).g+g+bg+bg+c=012g=18c.4+4+4g+4g+c=0.8g=8c.12g=18c4g=10g=52=f.C=8(g+1)=8(52+1)=8×32=+12Equation:x2+y25x5y+12=0.Ans.{ x }^{ 2 }+y^{ 2 }+2gx+2fy+c=0\\ 2x+2y\cfrac { dy }{ dx } +2g+2f\cfrac { dy }{ dx } =0.\\ \cfrac { dy }{ dx } =\cfrac { -y-x }{ y+f. } \\ \cfrac { dy }{ dx } \quad at\quad (3,3).\\ \Rightarrow \cfrac { dy }{ dx } =\cfrac { -y-3 }{ 3+f } \\ Slope\quad of\quad normal\quad at\quad this\quad point\quad =1\\ \Rightarrow -\cfrac { (g+3) }{ f+3 } (1)\quad =-1\\ \Rightarrow g+3=f+3.\\ \Rightarrow g=f.\\ \Rightarrow { x }^{ 2 }+y^{ 2 }+2gx+2fy+c=0\\ Circle\quad passes\quad through\quad (3,3)\& (2,2).\\ \Rightarrow g+g+bg+bg+c=0\\ \Rightarrow 12g=-18-c.\\ \Rightarrow 4+4+4g+4g+c=0.\\ 8g=-8-c.\\ -12g=-18-c\\ -4g=10\\ g=\cfrac { -5 }{ 2 } =f.\\ C=-8(g+1)\\ =-8(\cfrac { -5 }{ 2 } +1)\\ =-8\times \cfrac { -3 }{ 2 } \\ =+12\\ \therefore \quad Equation\quad :\\ { x }^{ 2 }+y^{ 2 }-5x-5y+12=0.\\ Ans.

বৃত্তের সমীকরণ ও পোলার সমীকরণ সংক্রান্ত টপিকের ওপরে পরীক্ষা দাও