লঘুমান গুরুমান বিষয়ক
The number of ciritical points of f(x)=∣x−1∣x2\displaystyle \mathrm{f}(\mathrm{x})=\frac{|x-1|}{x^{2}}f(x)=x2∣x−1∣ is
111
222
333
000
f(x)=∣x−1∣x2\displaystyle \mathrm{f}(\mathrm{x})=\dfrac{|x-1|}{x^{2}}f(x)=x2∣x−1∣
For maxima or minima,
f′(x)=0f'(x)=0f′(x)=0
⇒(x−1)(−x2+2x)=0\Rightarrow (x-1)(-x^2+2x)=0⇒(x−1)(−x2+2x)=0
⇒x=0,1,2\Rightarrow x=0,1,2⇒x=0,1,2
Hence, number of critical points of f(x)f(x)f(x) are 3.
দৃশ্যকল্প-I: y(x+1)(x+2)−x+4 y(x+1)(x+2)-x+4 y(x+1)(x+2)−x+4
দৃশ্যকল্প-II: g(x)=3x3−6x2−5x+1 \mathrm{g}(\mathrm{x})=3 \mathrm{x}^{3}-6 \mathrm{x}^{2}-5 \mathrm{x}+1 g(x)=3x3−6x2−5x+1
Let f(x)={x3/5x≤1−(x−2)3x>1f\left( x \right) =\left\{ \begin{matrix} { x }^{ { 3 }/{ 5 } }\quad \quad \quad x\le 1 \\ -{ \left( x-2 \right) }^{ 3 }\quad x>1 \end{matrix} \right. f(x)={x3/5x≤1−(x−2)3x>1
then the number of critical points on the graph of the function is
If for all x,yx, yx,y the function f is defined by; f(x)+f(y)+f(x)⋅f(y)=1f(x)+f(y)+f(x)\cdot f(y)=1f(x)+f(y)+f(x)⋅f(y)=1 and f(x)>0f(x) > 0f(x)>0.When f(x)f(x)f(x) is differentiable f′(x)=f'(x)= f′(x)=,
xlnx \frac{x}{\ln{x}} lnxx ফাংশনের সর্বনিম্ন মান নিচের কোনটি?