স্পর্শক ও অভিলম্ব বিষয়ক

The slope of the tangent to the curve x=3t2+1,y=t31x=3t^2+1, y=t^3-1 at x=1x=1 is ;

হানি নাটস

Given, x=3t2+1,y=t31x=3t^2+1, y=t^3-1
Slope of the tangent to the given curve is dydx=dydt×dtdx\dfrac{dy}{dx} = \dfrac{dy}{dt} \times \dfrac{dt}{dx}
=3t2×16t= 3t^2 \times \dfrac{1}{6t}
=t2=\dfrac{t}{2}
Since the slope has to be calculated at x=1,x = 1, i.e. at 3t2+1=13t^2 + 1 = 1, we get t=0t = 0
Thus, the required slope is 0.0.

স্পর্শক ও অভিলম্ব বিষয়ক টপিকের ওপরে পরীক্ষা দাও