x^n এর সহগ নির্ণয় বিষয়ক
The value of C12+C22....+Cn2C_1 ^2+C_2 ^2....+C_n ^2C12+C22....+Cn2 (where CiC_iCi is the ithi^{th}ith coefficient of (1+x)n(1+x)^n(1+x)n expansion), is:
nnn!\dfrac {n^n}{n!}n!nn
2n!n!n!\dfrac {2n!}{n!n!}n!n!2n!
2n!n!\dfrac {2n!}{n!}n!2n!
n!×2n2n!\dfrac {n!\times2^n}{2n!}2n!n!×2n
(1+x)n=nC0+x(nC1)+x2(nC2)+x3(nC3)+...+xn(nCn){ \left( 1+x \right) }^{ n }=^{ n }{ { C }_{ 0 } }+x\left( ^{ n }{ { C }_{ 1 } } \right) { +{ x }^{ 2 }\left( ^{ n }{ { C }_{ 2 } } \right) + }{ x }^{ 3 }\left( ^{ n }{ { C }_{ 3 } } \right) +...+{ x }^{ n }\left( ^{ n }{ { C }_{ n } } \right) \\ (1+x)n=nC0+x(nC1)+x2(nC2)+x3(nC3)+...+xn(nCn)
The coefficient of x3 x^3 x3 in the expansion of (1+2x)6(1−x)7 (1+2x)^6(1-x)^7 (1+2x)6(1−x)7 is
The coefficient of x2x^2x2 in expansion of the product(2-x2x^2x2).((1+2x+3x2)6(1 + 2x + 3x^2)^6(1+2x+3x2)6 + (1−14x2)6(1-1 4x^2)^6(1−14x2)6) is :
(1+x)21+(1+x)22+..+(1+x)30(1+x)^{21}+(1+x)^{22}+..+(1+x)^{30}(1+x)21+(1+x)22+..+(1+x)30 in the expansion of this what is the coefficient of x5x^{5}x5 is
If xm{ x }^{ m }xm occurs in the expansion of (x+1x2)2n(x+\frac { 1 }{ { x }^{ 2 } } )^{ 2n }(x+x21)2n, the coefficient of xm{ x }^{ m }xm, is