ত্রিকোণমিতিক অনুপাত

The value of (cosecθsinθ)(secθcosθ)(tanθ+cotθ)\displaystyle \left( \text{cosec}\theta -\sin { \theta } \right) \left( \sec{ \theta }-\cos { \theta } \right) \left( \tan { \theta } +\cot { \theta } \right) is

হানি নাটস

The value of (cosecθsinθ)(secθcosθ)(tanθ+cotθ)(\text{cosec} \theta -\sin \theta)(\sec \theta -\cos \theta)(\tan \theta +\cot \theta) is
(1sinθsinθ)(1cosθcosθ)(sinθcosθ+cosθsinθ)\displaystyle \left( \frac { 1 }{ \sin { \theta } } -\sin { \theta } \right) \left( \frac { 1 }{ \cos { \theta } } -\cos { \theta } \right) \left( \frac { \sin { \theta } }{ \cos { \theta } } +\frac { \cos { \theta } }{ \sin { \theta } } \right)

=(1sin2θsinθ)(1cos2θcosθ)(1sinθ.cosθ)\displaystyle =\left( \frac { 1-{ \sin }^{ 2 }\theta }{ \sin { \theta } } \right) \left( \frac { 1-{ \cos }^{ 2 }\theta }{ \cos { \theta } } \right) \left( \frac { 1 }{ \sin { \theta } .\cos { \theta } } \right)

=cos2θ×sin2θsin2θ×cos2θ\displaystyle =\frac { { \cos }^{ 2 }\theta \times { \sin }^{ 2 }\theta }{ { \sin }^{ 2 }\theta \times { \cos }^{ 2 }\theta }

=1=1

ত্রিকোণমিতিক অনুপাত টপিকের ওপরে পরীক্ষা দাও