লিমিট

The value of limn[tanπ2ntan2π2ntannπ2n]1/n\lim _{n \rightarrow \infty}\left[\tan \dfrac{\pi}{2 n} \tan \dfrac{2 \pi}{2 n} \cdots \tan \dfrac{n \pi}{2 n}\right]^{1 / n} is

কাজু বাদাম

LetA=limn[tanπ2ntan2π2ntannπ2n]1/n\operatorname{Let} A=\lim _{n \rightarrow \infty}\left[\tan \dfrac{\pi}{2 n} \tan \dfrac{2 \pi}{2 n} \cdots \tan \dfrac{n \pi}{2 n}\right]^{1 / n}\\

logA=limn1n[logtanπ2n+logtan2π2n\therefore \log A=\lim _{n \rightarrow \infty} \dfrac{1}{n}\left[\log \tan \dfrac{\pi}{2 n}+\log \tan \dfrac{2 \pi}{2 n}\right.\\

+limnr=1n1nlogtanπr2n=01logtan(π2x)dx+\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \dfrac{1}{n} \log \tan \dfrac{\pi r}{2 n}=\int_{0}^{1} \log \tan \left(\dfrac{\pi}{2} x\right) d x\\

=2π0π/2logtanydy=\dfrac{2}{\pi} \int_{0}^{\pi / 2} \log \tan y d yI=0π/2logtan(12πy)dyI=\int_{0}^{\pi / 2} \log \tan \left(\dfrac{1}{2} \pi-y\right) d y\\

( by Property IV)(\text{ by Property } \mathrm{IV})\\

=0π/2logcotydy=0π/2logtanydy=I\begin{array}{l}=\int_{0}^{\pi / 2} \log \cot y d y \\=-\int_{0}^{\pi / 2} \log \tan y d y=-I\end{array}

orI+I=0\operatorname{or} I+I=0 or 2I=02 I=0 or I=0I=0\\

from equation (1),logA=0A=e0=1(1), \log A=0 \therefore A=e^{0}=1

লিমিট টপিকের ওপরে পরীক্ষা দাও