লিমিট
Limx→13−x−2x−1=?\underset {x→1} {Lim} \frac{\sqrt{3-x}-\sqrt2}{x-1}=? x→1Limx−13−x−2=?
323\sqrt232
−32-3\sqrt2−32
24\frac{\sqrt2}{4}42
−24\frac{-\sqrt2}{4}4−2
Limx→13−x−2x−1=Limx→1123−x (−1)\underset {x→1} {Lim} \frac{\sqrt{3-x}-\sqrt2}{x-1}=\underset {x→1} {Lim}\frac{1}{2\sqrt{3-x}}\ \left(-1\right)x→1Limx−13−x−2=x→1Lim23−x1 (−1) [La Hopital's rule প্রয়োগ করে ] =−12 2= −24=\frac{-1}{2\ \sqrt2}=\ \frac{-\sqrt2}{4}=2 2−1= 4−2
If the function f(x)=(1−x)tanπx2f(x) = (1 - x)\tan \dfrac{{\pi x}}{2}f(x)=(1−x)tan2πx is continuous at x=1x = 1x=1 ,then f(1)=f(1)=f(1)=
limx→0xtan2x−2xtanx(1−cos2x)2 \displaystyle \lim _{x \rightarrow 0} \dfrac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}} x→0lim(1−cos2x)2xtan2x−2xtanx is equal to
এর সঠিক মান কোনটি?
limx→0 (1+5x)3x+2x= ?\mathrm{\lim\limits_{x\rightarrow0}\ \left(1+5x\right)^\frac{3x+2}{x}=\ ? }x→0lim (1+5x)x3x+2= ?