গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule
xxx এর সাপেক্ষে অন্তরক সহগ নিচের কোনটি? logax+logxa \log _{a} x+\log _{x} a logax+logxa
1xlna+lnax(ln8x)2 \frac{1}{x \ln a}+\frac{\ln a}{x(\ln8 x)^{2}}xlna1+x(ln8x)2lna
1xln5a−lnax(lnx)2 \frac{1}{x \ln 5a}-\frac{\ln a}{x(\ln x)^{2}}xln5a1−x(lnx)2lna
1xln4a+ln4ax(lnx)2 \frac{1}{x \ln 4a}+\frac{\ln4 a}{x(\ln x)^{2}}xln4a1+x(lnx)2ln4a
1xlna−lnax(lnx)2 \frac{1}{x \ln a}-\frac{\ln a}{x(\ln x)^{2}}xlna1−x(lnx)2lna
Solve:
logax+logxa=logae×logex+logxe×logea=1logea×lnx+1logex×lna=1lna×lnx+lna×(lnx)−1∴ddx(logax+logxa)=1lna1x+lna×{−1(lnx)−21x}=1xlna−lnax(lnx)2 \begin{aligned} & \log _{a} x+\log _{x} a \\ = & \log _{a} e \times \log _{e} x+\log _{x} e \times \log _{e} a \\ = & \frac{1}{\log _{e} a} \times \ln x+\frac{1}{\log _{e} x} \times \ln a \\ = & \frac{1}{\ln a} \times \ln x+\ln a \times(\ln x)^{-1} \\ \therefore & \frac{d}{d x}\left(\log _{a} x+\log _{x} a\right) \\ = & \frac{1}{\ln a} \frac{1}{x}+\ln a \times\left\{-1(\ln x)^{-2} \frac{1}{x}\right\} \\ = & \frac{1}{x \ln a}-\frac{\ln a}{x(\ln x)^{2}} \end{aligned} ===∴==logax+logxalogae×logex+logxe×logealogea1×lnx+logex1×lnalna1×lnx+lna×(lnx)−1dxd(logax+logxa)lna1x1+lna×{−1(lnx)−2x1}xlna1−x(lnx)2lna
If the angle between the curves y=2x y = 2^x y=2x and y=3x y=3^x y=3x is α, \alpha, α, then the value of tanα \tan \alpha tanα is equal to :
Differentiate the following w.rd/dxd/dxd/dx
sinx logx\sin x\ log xsinx logx.
ddx(e2x−3)= \frac{d}{d x}\left(e^{\sqrt{2 x}-3}\right)= dxd(e2x−3)= কত?
If x=acos3θx = a \cos^3 \thetax=acos3θ and y=asin3θy = a\sin^3 \thetay=asin3θ, then 1+(dydx)21 + \left( \dfrac{dy}{dx} \right )^21+(dxdy)2 is