ত্রিকোনমিতিক ফাংশনের অন্তরজ
x x x এর সাপেক্ষে sec2x \sec 2 x sec2x ফাংশনটির অন্তরক সহগ নিচের কোনটি ?
2tan2xsec2x 2 \tan 2 x \sec 2 x 2tan2xsec2x
2tanxsec2x 2 \tan x \sec 2 x 2tanxsec2x
2tan2xsec2 2 \tan 2 x \sec 2 2tan2xsec2
2tan2xsecx 2 \tan 2 x \sec x 2tan2xsecx
Solve: মনে করি, f(x)=sec2x \mathrm{f}(x)=\sec 2 x f(x)=sec2x.∴f(x+h)=sec2(x+h)=sec(2x+2 h) \therefore \mathrm{f}(x+\mathrm{h})=\sec 2(x+\mathrm{h})=\sec (2 \mathrm{x}+2 \mathrm{~h}) ∴f(x+h)=sec2(x+h)=sec(2x+2 h)
অন্তরক সহগের সংজ্ঞা হতে পাই,
ddx{f(x)}=limh→0f(x+h)−f(x)h∴ddx(sec2x)=limh→0sec(2x+2h)−sec2xh=limh→01h[1cos(2x+2h)−1cos2x]−=limh→0cos2x−cos(2x+2h)hcos(2x+2h)cos2x \begin{aligned} & \frac{d}{d x}\{\mathrm{f}(x)\}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ \therefore \quad & \frac{d}{d x}(\sec 2 x)=\lim _{h \rightarrow 0} \frac{\sec (2 x+2 h)-\sec 2 x}{h} \\ = & \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (2 x+2 h)}-\frac{1}{\cos 2 x}\right]^{-} \\ = & \lim _{h \rightarrow 0} \frac{\cos 2 x-\cos (2 x+2 h)}{h \cos (2 x+2 h) \cos 2 x} \end{aligned} ∴==dxd{f(x)}=h→0limhf(x+h)−f(x)dxd(sec2x)=h→0limhsec(2x+2h)−sec2xh→0limh1[cos(2x+2h)1−cos2x1]−h→0limhcos(2x+2h)cos2xcos2x−cos(2x+2h)
=limh→02sin2x+2x+2h2sin2x+2h−2x2hcos(2x+2h)cos2x=2limh→0sin(2x+h)cos(2x+2h)cos2x×limh→0sinhh=2sin(2x+0)cos(2x+0)cos2x×1=2sin2xcos2xcos2x=2tan2xsec2x \begin{array}{l} =\lim _{h \rightarrow 0} \frac{2 \sin \frac{2 x+2 x+2 h}{2} \sin \frac{2 x+2 h-2 x}{2}}{h \cos (2 x+2 h) \cos 2 x} \\ =2 \lim _{h \rightarrow 0} \frac{\sin (2 x+h)}{\cos (2 x+2 h) \cos 2 x} \times \lim _{h \rightarrow 0} \frac{\sin h}{h} \\ =2 \frac{\sin (2 x+0)}{\cos (2 x+0) \cos 2 x} \times 1 \\ =\frac{2 \sin 2 x}{\cos 2 x \cos 2 x}=2 \tan 2 x \sec 2 x \end{array} =limh→0hcos(2x+2h)cos2x2sin22x+2x+2hsin22x+2h−2x=2limh→0cos(2x+2h)cos2xsin(2x+h)×limh→0hsinh=2cos(2x+0)cos2xsin(2x+0)×1=cos2xcos2x2sin2x=2tan2xsec2x
If the functions f(x)=sin(x+a) \displaystyle f\left ( x \right )=\sin \left ( x+a \right ) f(x)=sin(x+a) and g(x)=bsinx+ccosx \displaystyle g\left ( x \right )=b\sin x+c\cos x g(x)=bsinx+ccosx satisfy f(0)=g(0) \displaystyle f\left ( 0 \right )=g\left ( 0 \right ) f(0)=g(0) and f′(0)=g′(0) \displaystyle {f}'\left ( 0 \right )={g}'\left ( 0 \right ) f′(0)=g′(0) then
dydx\displaystyle\frac{dy}{dx}dxdy at t=π4\displaystyle t=\frac{\pi}{4}t=4π for x=a[cost+12logtan2t2]\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]x=a[cost+21logtan22t] and y=asinty=a\sin{t}y=asint is
y=ln(cosx) y=\ln (\cos x) y=ln(cosx) হলে, dydx \frac{d y}{d x} dxdy এর মান কত?
y=sin(1x) y = \sin{\left ( \frac{1}{x} \right )} y=sin(x1) হলে dydx \frac{dy}{dx} dxdy এর মান-
নিচের কোনটি সঠিক?