গুণফল ,ভাগফল ও সংযোজিত ফাংশনের অন্তরজ/Chain Rule
xxx এর সাপেক্ষে x2logax+7ex⋅cosxx^{2} \log _{a} x+7 e^{x} \cdot \cos xx2logax+7ex⋅cosx এর অন্তরক সহগ নিচের কোনটি ?
(1lna+2logax)+7ex(cosx−sinx)\left(\frac{1}{\ln a}+2 \log _{a} x\right)+7 e^{x}(\cos x-\sin x)(lna1+2logax)+7ex(cosx−sinx)
x(1lna+2logax)+7ex(cosx−sinx)x\left(\frac{1}{\ln a}+2 \log _{a} x\right)+7 e^{x}(\cos x-\sin x)x(lna1+2logax)+7ex(cosx−sinx)
x(1lna+2logax)+ex(cosx−sinx)x\left(\frac{1}{\ln a}+2 \log _{a} x\right)+ e^{x}(\cos x-\sin x)x(lna1+2logax)+ex(cosx−sinx)
(1lna+2logax)+ex(cosx−sinx)\left(\frac{1}{\ln a}+2 \log _{a} x\right)+ e^{x}(\cos x-\sin x)(lna1+2logax)+ex(cosx−sinx)
Solve:
x2logax+7ex⋅cosxddx(x2logax+7excosx)=x2ddx(logax)+logaxddx(x2)+7{exddx(cosx)+cosxddx(ex)}=x21xlna+logax(2x)+ \begin{array}{l} x^{2} \log _{a} x+7 e^{x} \cdot \cos x \\ \frac{d}{d x}\left(x^{2} \log _{a} x+7 e^{x} \cos x\right)=x^{2} \frac{d}{d x}\left(\log _{a} x\right) \\ +\log _{a} x \frac{d}{d x}\left(x^{2}\right)+7\left\{e^{x} \frac{d}{d x}(\cos x)+\right. \\ \left.\cos x \frac{d}{d x}\left(e^{x}\right)\right\} \\ =x^{2} \frac{1}{x \ln a}+\log _{a} x(2 x)+ \end{array} x2logax+7ex⋅cosxdxd(x2logax+7excosx)=x2dxd(logax)+logaxdxd(x2)+7{exdxd(cosx)+cosxdxd(ex)}=x2xlna1+logax(2x)+
7{ex(−sinx)+cosx⋅ex}=x(1lna+2logax)+7ex(cosx−sinx) \begin{array}{r} 7\left\{e^{x}(-\sin x)+\cos x \cdot e^{x}\right\} \\ =x\left(\frac{1}{\ln a}+2 \log _{a} x\right)+7 e^{x}(\cos x-\sin x) \end{array} 7{ex(−sinx)+cosx⋅ex}=x(lna1+2logax)+7ex(cosx−sinx)
If the angle between the curves y=2x y = 2^x y=2x and y=3x y=3^x y=3x is α, \alpha, α, then the value of tanα \tan \alpha tanα is equal to :
xxx এর সাপেক্ষে অন্তরক সহগ নিচের কোনটি? ln{ex(x−1x+1)3/2} \ln \left\{e^{x}\left(\frac{x-1}{x+1}\right)^{3 / 2}\right\} ln{ex(x+1x−1)3/2}
Differentiate the following w.rd/dxd/dxd/dx
sinx logx\sin x\ log xsinx logx.
ddx(e2x−3)= \frac{d}{d x}\left(e^{\sqrt{2 x}-3}\right)= dxd(e2x−3)= কত?