ত্রিকোণমিতিক সূত্রাবলি ও ত্রিভুজের সূত্রাবলী
xcosα+ysinα=k=xcosβ+ysinβ x \cos \alpha+y \sin \alpha=\mathrm{k}=x \cos \beta+y \sin \beta xcosα+ysinα=k=xcosβ+ysinβ হলে
xcos12(α+β)=ysin12(α+β)=? \frac{x}{\cos \frac{1}{2}(\alpha+\beta)}=\frac{y}{\sin \frac{1}{2}(\alpha+\beta)}=? cos21(α+β)x=sin21(α+β)y=?
kcos12(α−β)\frac{k}{\cos \frac{1}{2}(\alpha-\beta)}cos21(α−β)k
kcos12(α+β)\frac{k}{\cos \frac{1}{2}(\alpha+\beta)}cos21(α+β)k
ksin12(α−β)\frac{k}{\sin \frac{1}{2}(\alpha-\beta)}sin21(α−β)k
ksin12(α+β)\frac{k}{\sin \frac{1}{2}(\alpha+\beta)}sin21(α+β)k
দেওয়া আছে,
xcosα+ysinα−k=0xcosβ+ysinβ−k=0 \begin{array}{l} x \cos \alpha+y \sin \alpha-\mathrm{k}=0 \\ x \cos \beta+y \sin \beta-\mathrm{k}=0 \end{array} xcosα+ysinα−k=0xcosβ+ysinβ−k=0
বজ্রগুণন প্রক্রিয়ায সাহায্যে (1) ও (2) হতে আমর। পাই , x−sinα+sinβ=y−cosβ+cosα \frac{x}{-\sin \alpha+\sin \beta}=\frac{y}{-\cos \beta+\cos \alpha} −sinα+sinβx=−cosβ+cosαy
=kcosαsinβ−sinαcosβ⇒x2cos12(α+β)sin12(β−α)=y2sin12(α+β)sin12(β−α)=ksin(β−α)⇒x2cos12(α+β)sin12(β−α)=y2sin12(α+β)sin12(β−α)=k⋅2sin12(β−α)cos12(β−α)∴xcos12(α+β)=ysin12(α+β)=kcos12(α−β) \begin{array}{l} =\frac{k}{\cos \alpha \sin \beta-\sin \alpha \cos \beta} \\ \quad \Rightarrow \frac{x}{2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)} \\ \quad=\frac{y}{2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)}=\frac{k}{\sin (\beta-\alpha)} \\ \quad \Rightarrow \frac{x}{2 \cos \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)} \\ \quad=\frac{y}{2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\beta-\alpha)} \\ \quad=\frac{k \cdot}{2 \sin \frac{1}{2}(\beta-\alpha) \cos \frac{1}{2}(\beta-\alpha)} \\ \therefore \frac{x}{\cos \frac{1}{2}(\alpha+\beta)}=\frac{y}{\sin \frac{1}{2}(\alpha+\beta)}=\frac{k}{\cos \frac{1}{2}(\alpha-\beta)} \end{array} =cosαsinβ−sinαcosβk⇒2cos21(α+β)sin21(β−α)x=2sin21(α+β)sin21(β−α)y=sin(β−α)k⇒2cos21(α+β)sin21(β−α)x=2sin21(α+β)sin21(β−α)y=2sin21(β−α)cos21(β−α)k⋅∴cos21(α+β)x=sin21(α+β)y=cos21(α−β)k
If cos3π9+sin3π18=m4(cosπ9+sinπ18) \cos^3\frac{\pi}{9}+ \sin^3\frac{\pi}{18} = \dfrac{m}{4} \left( \cos\frac{\pi}{9}+ \sin\frac{\pi}{18}\right)cos39π+sin318π=4m(cos9π+sin18π).Find mmm
উদ্দীপক-১: XYZ ত্রিভুজে X+Y+Z=π X+Y+Z=\pi X+Y+Z=π
উদ্দীপক-২: sinα+sinβ=P \sin \alpha+\sin \beta=P sinα+sinβ=P এবং cosα+cosβ=Q \cos \alpha+\cos \beta=Q cosα+cosβ=Q
চিত্রানুসারে-
নিচের কোনটি সঠিক ?