i বিষয়ক
x=12(−1+−3)x=\frac{1}{2}\left(-1+\sqrt{-3}\right)x=21(−1+−3)এবংy=12(−1−−3)y=\frac{1}{2}\left(-1-\sqrt{-3}\right)y=21(−1−−3)হলে,x2+xy+y2x^2+xy+y^2x2+xy+y2এর মান-
0
2
√3
1
x=12(−1+−3),y=12(−1−−3)x=\frac{1}{2}\left(-1+\sqrt{-3}\right),y=\frac{1}{2}\left(-1-\sqrt{-3}\right)x=21(−1+−3),y=21(−1−−3)
⇒x=ω\Rightarrow x=\omega⇒x=ωএবং⇒y=ω2\Rightarrow y=\omega^2⇒y=ω2
∴x2+xy+y2=ω2+ω.ω2+(ω2)2\therefore x^2+xy+y^2=\omega^2+\omega.\omega^2+(\omega^2)^2∴x2+xy+y2=ω2+ω.ω2+(ω2)2
=ω2+ω3+ω4=1+ω+ω2=0=\omega^2+\omega^3+\omega^4=1+\omega+\omega^2=0=ω2+ω3+ω4=1+ω+ω2=0
The imaginary number iii is defined such that i2=−1i^2=-1i2=−1. What is the value of (1−i5)(1+i5)(1 - i \sqrt {5}) ( 1 + i\sqrt {5})(1−i5)(1+i5)?
i2=−1 i^2=-1\ i2=−1 হলে i−39i^{-39}i−39এর মান কত ?
(1+i)8+(1−i)8=(1 + i)^8 + (1 -i)^8 =(1+i)8+(1−i)8=
A+iB=2−i35−i4 A+i B=\frac{2-i 3}{5-i 4} A+iB=5−i42−i3 হলে, B \mathrm{B} B এর মান কোনটি?