দ্বিপদী বিস্তৃতি

  x^4/(x^3+1) এর আংশিক ভগ্নাংশ কোনটি ? 

অসীম স্যার

x4x3+1=x4+xxx3+1=xxx3+1=xx(x+1)(x2x+1) \frac{\mathrm{x}^{4}}{\mathrm{x}^{3}+1}=\frac{\mathrm{x}^{4}+\mathrm{x}-\mathrm{x}}{\mathrm{x}^{3}+1}=\mathrm{x}-\frac{\mathrm{x}}{\mathrm{x}^{3}+1}=\mathrm{x}-\frac{\mathrm{x}}{(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)}

ধরি, x(x+1)(x2x+1)Ax+1+Bx+Cx2x+1x=A(x2x+1)+(Bx+C)(x+1) \frac{\mathrm{x}}{(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)} \equiv \frac{\mathrm{A}}{\mathrm{x}+1}+\frac{\mathrm{Bx}+\mathrm{C}}{\mathrm{x}^{2}-\mathrm{x}+1} \Rightarrow \mathrm{x}=\mathrm{A}\left(\mathrm{x}^{2}-\mathrm{x}+1\right)+(\mathrm{Bx}+\mathrm{C})(\mathrm{x}+1)

x=Ax2Ax+A+Bx2+Cx+Bx+C \Rightarrow \mathrm{x}=\mathrm{Ax}^{2}-\mathrm{Ax}+\mathrm{A}+\mathrm{Bx}^{2}+\mathrm{Cx}+\mathrm{Bx}+\mathrm{C}

\therefore সহগ সমীকৃত করে পাই, A+B=0;A=B;A+C=0A=CB=C \mathrm{A}+\mathrm{B}=0 ; \mathrm{A}=-\mathrm{B} ; \mathrm{A}+\mathrm{C}=0 \therefore \mathrm{A}=-\mathrm{C} \therefore \mathrm{B}=\mathrm{C} A+B+C=1 -\mathrm{A}+\mathrm{B}+\mathrm{C}=1

AAA=1A=13B=C=13 \therefore-\mathrm{A}-\mathrm{A}-\mathrm{A}=1 \Rightarrow \mathrm{A}=-\frac{1}{3} \therefore \mathrm{B}=\mathrm{C}=\frac{1}{3}

x(x+1)(x2x+1)=13(x+1)+x+13(x2x+1)x4x3+1=x+13(x+1)x+13(x2x+1) \therefore \frac{\mathrm{x}}{(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}+1\right)}=-\frac{1}{3(\mathrm{x}+1)}+\frac{\mathrm{x}+1}{3\left(\mathrm{x}^{2}-\mathrm{x}+1\right)} \therefore \frac{\mathrm{x}^{4}}{\mathrm{x}^{3}+1}=\mathrm{x}+\frac{1}{3(\mathrm{x}+1)}-\frac{\mathrm{x}+1}{3\left(\mathrm{x}^{2}-\mathrm{x}+1\right)}

দ্বিপদী বিস্তৃতি টপিকের ওপরে পরীক্ষা দাও