1. f(x)=x2+x+1 f(x)=x^{2}+x+1 f(x)=x2+x+1.
Determine the nature of the roots of the equation f(x)=0 f(\mathrm{x})=0 f(x)=0.
If {f(x)}n=a0+a1x+a2x2+……..+a2nx2n \{f(x)\}^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots . .+a_{2 n} x^{2 n} {f(x)}n=a0+a1x+a2x2+……..+a2nx2n, then prove that, a0+a3+a6+…..=3n−1 a_{0}+a_{3}+a_{6}+\ldots . .=3^{n-1} a0+a3+a6+…..=3n−1.
If the roots of the equation f(x)=0 f(\mathrm{x})=0 f(x)=0 are α,β \alpha, \beta α,β then determine the quadratic equation whose roots are α+1β \alpha+\frac{1}{\beta} α+β1 and β+1α. \beta+\frac{1}{\alpha} . β+α1.
2. Z1=1−ix \mathrm{Z}_{1}=1-\mathrm{ix} Z1=1−ix and Z2=a+ib \mathrm{Z}_{2}=\mathrm{a}+\mathrm{ib} Z2=a+ib where a,b∈R \mathrm{a}, \mathrm{b} \in \mathbb{R} a,b∈R.
If x=3 x=\sqrt{3} x=3, then express the complex number Z1 Z_{1} Z1 in polar form.
Prove that, a real value of x x x satisfies the equation Z1Z1‾=Z2‾ \frac{Z_{1}}{\overline{Z_{1}}}=\overline{Z_{2}} Z1Z1=Z2 where a2+b2=1 a^{2}+b^{2}=1 a2+b2=1.
If Z23=p+iq \sqrt[3]{Z_{2}}=p+i q 3Z2=p+iq, then prove that, −2(p2+q2)=ap−bq -2\left(p^{2}+q^{2}\right)=\frac{a}{p}-\frac{b}{q} −2(p2+q2)=pa−qb.
3. Scenario-1: x=by2+cy+a x=b y^{2}+c y+a x=by2+cy+a is a conic.
Scenario-2: Ends of the latus rectum are (−2,2) (-2,2) (−2,2) and (−4,2) (-4,2) (−4,2) of a parabola.
Determine the eccentricity of conic x2−4y2=2 x^{2}-4 y^{2}=2 x2−4y2=2.
From scenario-2, find the equation of parabola.
In scenario-1, if the vertex of the conic is at a point (1,−2) (1,-2) (1,−2) and it passes through the point (3,0) (3,0) (3,0), then find the values of a,b,c \mathrm{a}, \mathrm{b}, \mathrm{c} a,b,c.
4. Scenario-1: A man swims directly across a flowing river in time t1sec t_{1} \mathrm{sec} t1sec and he swims a distance equal to the breadth of the river down the stream in time t2sec t_{2} \mathrm{sec} t2sec.
If the greatest and least resultant of two velocities act on a particle are 14 m/sec 14 \mathrm{~m} / \mathrm{sec} 14 m/sec and 2 m/sec 2 \mathrm{~m} / \mathrm{sec} 2 m/sec respectively, then find the velocities.
In scenario-1, if u u u be the speed of the man in still water and v v v that of the stream, then prove that, u:v=(t12+t22):(t12−t22). u: v=\left(t_{1}{ }^{2}+t_{2}{ }^{2}\right):\left(t_{1}{ }^{2}-t_{2}{ }^{2}\right) . u:v=(t12+t22):(t12−t22).
In scenario-2 if h h h be the greatest height of a particle, then find OA. [g=9.8 m/s2] \left[\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right] [g=9.8 m/s2]
5. (i) ax2+2cx+2b=0 a x^{2}+2 c x+2 b=0 ax2+2cx+2b=0; (ii) ax2+2bx+2c=0 a x^{2}+2 b x+2 c=0 ax2+2bx+2c=0
If a+b+c=0 a+b+c=0 a+b+c=0 and a,b,c a, b, c a,b,c are real, then show that the roots of the equation (ii) will be real and unequal.
If the equations (i) and (ii) have a common root, then show that, a+2b+2c=0 a+2 b+2 c=0 a+2b+2c=0.
If the difference of the roots of the equations (i) and (ii) are equal, then show that, b=c b=c b=c and b+c+2a=0 b+c+2 a=0 b+c+2a=0.