1. When will be vector V⃗ \vec{V} V a solenoid?
∇⃗⋅V⃗=0 \vec{\nabla} \cdot \vec{V}=0 ∇⋅V=0
∇⃗×v⃗=0→ \vec{\nabla} \times \vec{v}=\overrightarrow{0} ∇×v=0
∇⃗v⃗=0 \vec{\nabla} \vec{v}=0 ∇v=0
∇⃗⋅V⃗≠0 \vec{\nabla} \cdot \vec{V} \neq 0 ∇⋅V=0
2. Which one is the dimension of coefficient of viscosity?
ML−2 T−1 \mathrm{ML}^{-2} \mathrm{~T}^{-1} ML−2 T−1
ML−2 T−2 \mathrm{ML}^{-2} \mathrm{~T}^{-2} ML−2 T−2
ML−1 T−2 \mathrm{ML}^{-1} \mathrm{~T}^{-2} ML−1 T−2
ML−1 T−1 \mathrm{ML}^{-1} \mathrm{~T}^{-1} ML−1 T−1
3. Wavelength of the wave is-?
35 cm
40 cm
60 cm
70 cm
4. Based on the diagram above ∣A⃗+B⃗∣= |\vec{A}+\vec{B}|= ∣A+B∣= ?
15.81 N
14 N
13.23 N
11.23 N
5. If m \mathrm{m} m is pulled and then released then the frequency of vibration is -
f=12πk1−k2m f=\frac{1}{2 \pi} \sqrt{\frac{k_{1}-k_{2}}{m}} f=2π1mk1−k2
f=12πmk1+k2 f=\frac{1}{2 \pi} \sqrt{\frac{m}{k_{1}+k_{2}}} f=2π1k1+k2m
f=12πk1+k2m f=\frac{1}{2 \pi} \sqrt{\frac{k_{1}+k_{2}}{m}} f=2π1mk1+k2
f=12πmk1−k2 f=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{m}}{\mathrm{k}_{1}-\mathrm{k}_{2}}} f=2π1k1−k2m