1. A=[1230121610],B=[101020301],C=[xyz] A=\left[\begin{array}{lll}12 & 3 & 0 \\ 1 & 2 & 1 \\ 6 & 1 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 1\end{array}\right], C=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] A=1216321010,B=103020101,C=xyz
D=[121] D=\left[\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right] D=121
Determine the (3,2) (3,2) (3,2) th entry of ∣A∣ |\mathrm{A}| ∣A∣.
Find out 5,A2−3I 5, A^{2}-3 I 5,A2−3I, where I I I is an identity matrix.
If BC=D B C=D BC=D, then solve the system of linear equation by Crammer's rule.
2. P=tanA⋅tanB,q=tanC⋅tanD,r=4sinα2sinβ2cosγ2−1 P=\tan A \cdot \tan B, q=\tan C \cdot \tan D, r=4 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}-1 P=tanA⋅tanB,q=tanC⋅tanD,r=4sin2αsin2βcos2γ−1.
Find the value of cos75∘ \cos 75^{\circ} cos75∘. (without calculator)
If A=20∘,B=2A,C=3A,D=4A A=20^{\circ}, B=2 A, C=3 A, D=4 A A=20∘,B=2A,C=3A,D=4A, then show that, pq= p q= pq= 3.
If α+β+γ=0 \alpha+\beta+\gamma=0 α+β+γ=0 then prove that, cosα+cosβ−cosγ=r+2 \cos \alpha+\cos \beta-\cos \gamma=r+2 cosα+cosβ−cosγ=r+2.
3.
If nC5=nC7 { }^{n} C_{5}={ }^{n} C_{7} nC5=nC7 then find the value of nC11 { }^{n} C_{11} nC11 .
Find the length of intercept from x x x-axis by the circle with centre C \mathbf{C} C in the stem.
If f1(−2)=n f^{1}(-2)=\mathrm{n} f1(−2)=n ! from the equation of f(x) f(\mathrm{x}) f(x) of AB A B AB, then find the value of n n n.
4. EQUATION of a straight line is
4x−3y+c=0 4 x-3 y+c=0 4x−3y+c=0. and P(4,3)Q(−8,−5) P(4,3) Q(-8,-5) P(4,3)Q(−8,−5) are two points on the line
Determine the ratio that the x x x-axis divides the line PQ P Q PQ.
Find the intercept from x x x-axis by the line which is perpendicular bisector of the line PQ P Q PQ.
How many words can be formed by taking two vowels and one consonant from the given word in the stem which, is written with block letters so that the order of vowels can not be changed?
5. Dy=2xIn11−x′f(x)=(1−x2)y2−xy1−a2y D y=2^{x} \operatorname{In} \frac{1}{1-x^{\prime}} f(x)=\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y Dy=2xIn1−x′1f(x)=(1−x2)y2−xy1−a2y.
Show that, limx→0x1−1+x=−2 \lim _{x \rightarrow 0} \frac{x}{1-\sqrt{1+x}}=-2 limx→01−1+xx=−2.
Find out dydx \frac{d y}{d x} dxdy with respect to x x x.
Show that, f(x)=0 f(x)=0 f(x)=0, when sin−1x=lnyα \sin ^{-1} x=\frac{\ln y}{\alpha} sin−1x=αlny