1. f(x)=cot−1y−tan−1x…………………(i) f(x)=\cot ^{-1} y-\tan ^{-1} x …………………(i) f(x)=cot−1y−tan−1x…………………(i)
cosθ−cos9θ=sin5θ…………………………(ii) \cos \theta-\cos 9 \theta=\sin 5 \theta …………………………(ii) cosθ−cos9θ=sin5θ…………………………(ii)
Find the periodic time of sinx3 \sin \frac{x}{3} sin3x.
if f(x)=π6 f(x)=\frac{\pi}{6} f(x)=6π, then prove that, x+y+3xy=3 x+y+\sqrt{3} x y=\sqrt{3} x+y+3xy=3.
Find the general solution of stem-2.
2. Stem-1: z=x+iy;∣z+5∣+∣z−5∣=15…………………(1) z=x+i y ;|z+5|+|z-5|=15 …………………(1) z=x+iy;∣z+5∣+∣z−5∣=15…………………(1)
Stem-2: 2x+3x−3<x+3x−1…………………(2) \frac{2 x+3}{x-3}<\frac{x+3}{x-1} …………………(2) x−32x+3<x−1x+3…………………(2)
Find the cube roots of unity.
From stem-I, find the equation of the locus.
From stem-2, solve the inequality and show them in the real lines.
3. α,β \alpha, \beta α,β be the roots of the equation x2+bx+c=0 x^{2}+b x+c=0 x2+bx+c=0.
Find the discriminant of the given equation.
Express the roots of c(x2+1)−(b2−2c)x=0 c\left(x^{2}+1\right)-\left(b^{2}-2 c\right) x=0 c(x2+1)−(b2−2c)x=0 in terms of α \alpha α and β \beta β.
Find the equation whose roots are α+1β \alpha+\frac{1}{\beta} α+β1 and β+1α \beta+\frac{1}{\alpha} \quad β+α1
4. the figure represent a conic, whose directrix is MZM'.
Find the eccentricity of the hyperbola x24−y29=1. \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \text {. } 4x2−9y2=1.
If the vertex A(1,−2) A(1,-2) A(1,−2); find the equation of the directrix MZM′ \mathrm{MZM}^{\prime} MZM′
If SP:PM=1:2 S P: P M=1: 2 SP:PM=1:2 and the equation of MZM′ M Z M^{\prime} MZM′ is 3x+4y=1 3 x+4 y=1 3x+4y=1, then find the equation of the conic.
5. f(x)=(x2+3x)′′……… f(x)=\left(x^{2}+\frac{3}{x}\right)^{\prime \prime} \ldots \ldots \ldots f(x)=(x2+x3)′′……… (i)
g(x)=(1+px)m…………(ii) g(x)=(1+p x)^{m} …………(ii) g(x)=(1+px)m…………(ii)
(1−3x)−1 (1-3 x)^{-1} (1−3x)−1 Find the expansion of (1−3x)−1 (1-3 x)^{-1} (1−3x)−1.
If the co-efficient of (r+1)th (r+1)^{\text {th }} (r+1)th and (r+2)th (r+2)^{\text {th }} (r+2)th terms of f(x) f(x) f(x) be equal to each other, then find the value of r r r.
If p=−8 p=-8 p=−8 and m=−12 m=-\frac{1}{2} m=−21 in g(x) g(x) g(x), then show that, the co-efficient of xr x^{r} xr is (2r)2r(r!)2 \frac{(2 r) 2^{r}}{(r !)^{2}} (r!)2(2r)2r