Omega বিষয়ক
উদ্দীপক-১ : x=(a+bω+cω2),y=(a+bω2+cω)x=\left(a+b \omega+c \omega^{2}\right), \quad y=\left(a+b \omega^{2}+c \omega\right)x=(a+bω+cω2),y=(a+bω2+cω)
উদ্দীপক-২ : 7+i8=(p+iq)37+i 8=(p+i q)^{3}7+i8=(p+iq)3
এককের একটি কাল্পনিক ঘনমূল ω\omegaω হলে, দেখাও যে, (1+ω+3ω)6=64\left(1+\omega+\frac{3}{\omega}\right)^{6}=64(1+ω+ω3)6=64
উদ্দীপক-১ এর সাহায্যে যদি x3+y3=0x^{3}+y^{3}=0x3+y3=0 হয়, তবে দেখাও যে, b=12(c+a)b=\frac{1}{2}(c+a)b=21(c+a)
উদ্দীপক-২ এর সাহায্যে প্রমাণ কর যে, p2−q2=74p+2qp^{2}- q^{2}=\frac{7}{4 p}+\frac{2}{q}p2−q2=4p7+q2
null
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
z1=x− z_{1}=x- z1=x− iy এবং z2(ω)=a+bω+ω2; z_{2}(\omega)=a+b \omega+\omega^{2} ; z2(ω)=a+bω+ω2; যেখানে ω \omega ω হলো একের একটি কাল্পনিক ঘনমূল।