মান নির্ণয়

প্রমাণ কর যে, sin75+sin15sin75sin15=3 \frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}=\sqrt{3} .

L.S =sin75+sin15sin75sin15=cos15+sin15cos15sin15 =\frac{\sin 75^{\circ}+\sin 15^{\circ}}{\sin 75^{\circ}-\sin 15^{\circ}}=\frac{\cos 15^{\circ}+\sin 15^{\circ}}{\cos 15^{\circ}-\sin 15^{\circ}}

=1+tan151tan15[cos15 =\frac{1+\tan 15^{\circ}}{1-\tan 15^{\circ}}\left[\cos 15^{\circ}\right. দ্বারা ভাগ করে]

=tan45+tan151tan45tan15=tan(45+15) =\frac{\tan 45^{\circ}+\tan 15^{\circ}}{1-\tan 45^{\circ} \tan 15^{\circ}}=\tan \left(45^{\circ}+15^{\circ}\right)

=tan60=3.= =\tan 60^{\circ}=\sqrt{3 .}= R.S

(Proved)

মান নির্ণয় টপিকের ওপরে পরীক্ষা দাও