বিপরীত ম্যাট্রিক্স
যদি B= [201−2] \left [ \begin{matrix} 2 & 0 \\ 1 & - 2 \end{matrix} \right ] [210−2] হয় তবে, B−1 B^{- 1} B−1 নিচের কোনটি?
[20−21] \left [ \begin{matrix} 2 & 0 \\ - 2 & 1 \end{matrix} \right ] [2−201]
[12014−12] \left [ \begin{matrix} \frac{1}{2} & 0 \\ \frac{1}{4} & - \frac{1}{2} \end{matrix} \right ] [21410−21]
[80−84] \left [ \begin{matrix} 8 & 0 \\ - 8 & 4 \end{matrix} \right ] [8−804]
[8048] \left [ \begin{matrix} 8 & 0 \\ 4 & 8 \end{matrix} \right ] [8408]
B−1=1∣201−2∣[−20−12] B^{-1}=\frac{1}{\left|\begin{array}{ll}2 & 0 \\ 1 & -2\end{array}\right|}\left[\begin{array}{ll}-2 & 0 \\ -1 & 2\end{array}\right] B−1=210−21[−2−102]
=−14[−20−11]=[12014−12] =\frac{-1}{4}\left[\begin{array}{ll} -2 & 0 \\ -1 & 1 \end{array}\right]=\left[\begin{array}{ll} \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{-1}{2} \end{array}\right] =4−1[−2−101]=[214102−1]
A=[2−131111−12],B=[xyz],C=[254]\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right], \mathrm{C}=\left[\begin{array}{l}2 \\ 5 \\ 4\end{array}\right]A=211−11−1312,B=xyz,C=254
2x−y−z=6,x+3y+2z=12 \mathrm{x}-\mathrm{y}-\mathrm{z}=6, \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=12x−y−z=6,x+3y+2z=1 এবং 3x−y−5z=13 \mathrm{x}-\mathrm{y}-5 \mathrm{z}=13x−y−5z=1.
A=(1−1−23),B=(1−13−2) A=\left(\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right), B=\left(\begin{array}{ll}1 & -1 \\ 3 & -2\end{array}\right) A=(1−2−13),B=(13−1−2)
এবং x - y = 1 ও 2x - 3y = 2 একজোড়া সমীকরণ ।
A=(1234) A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) A=(1324) হলে A−1= A^{-1}= A−1= কত?