দ্বিপদী বিস্তৃতি

হানি নাটস

Let x=1x=1

Hence, we get

(α22α+1)51(\alpha^{2}-2\alpha+1)^{51}

=[(α1)2]51=[(\alpha-1)^{2}]^{51}

=[α1]102=[\alpha-1]^{102}

Now sum of the coefficients is 00.

Hence

α1=0\alpha-1=0

α=1\alpha=1

Therefore the point (α,2α2)(\alpha,2\alpha^{2}) becomes (1,2)(1,2)

x2+y24=0x^{2}+y^{2}-4=0 is the equation of the given circle.

Substituting the acquired point, we get

1+441+4-4

1>01>0

Hence the point lies outside the circle.

দ্বিপদী বিস্তৃতি টপিকের ওপরে পরীক্ষা দাও