নির্দিষ্ট যোগজ

01e(x2)dx=? \int_{0}^{1} e^{- \left ( x^{2} \right )} dx = ?

RUET 14-15

01ex2dx=011x2+x42!+=[xx33+x55.2!]01=[113+15.2!]=k=0(1)k(2k+1)k! \begin{aligned} & \int_{0}^{1} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\int_{0}^{1} 1-\mathrm{x}^{2}+\frac{\mathrm{x}^{4}}{2 !}+\ldots \\ = & {\left[\mathrm{x}-\frac{\mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{5}}{5.2 !} \ldots\right]_{0}^{1} } \\ = & {\left[1-\frac{1}{3}+\frac{1}{5.2 !} \ldots \cdot\right] } \\ = & \sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1) \mathrm{k} !}\end{aligned}

নির্দিষ্ট যোগজ টপিকের ওপরে পরীক্ষা দাও