ত্রিকোনোমিতিক ফাংশনের যোগজীকরণ
∫9−x2 dx=\int_{ }^{ }\sqrt{9-x^{2\ }}dx=∫9−x2 dx=কত?
∫9−x2dx=∫32−x2dx=x29−x2+322sin−1x3+c=x29−x2+92sin−1x3+c \begin{aligned} & \int \sqrt{9-x^{2}} d x \\ = & \int \sqrt{3^{2}-x^{2}} d x \\ = & \frac{x}{2} \sqrt{9-x^{2}}+\frac{3^{2}}{2} \sin ^{-1} \frac{x}{3}+c \\ = & \frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}+c\end{aligned} ===∫9−x2dx∫32−x2dx2x9−x2+232sin−13x+c2x9−x2+29sin−13x+c
∫sinx°dx=কত?\int_{ }^{ }\sin x\degree dx=কত?∫sinx°dx=কত?
যোগজীকরণ নির্ণয় কর:
∫dxcosx+sinx \int \frac{dx}{\cos{x} + \sin{x}} ∫cosx+sinxdx
f(x)=x………(i) f(x)=x \ldots \ldots \ldots(i) f(x)=x………(i)
g(x)=cos−1x2………(ii) g(x)=\cos ^{-1} x^2 \ldots \ldots \ldots(i i) g(x)=cos−1x2………(ii)
y2=7x………(iii) y^2=7 x \ldots \ldots \ldots(i i i) y2=7x………(iii)
∫dx1+cosx=f(x)+c \int \frac{dx}{1 + \cos{x}} = f{\left ( x \right )} + c ∫1+cosxdx=f(x)+c হলে, f(x)=?