সরল দোলন গতি

A body with speed 'vv' is moving along a straight line. At the same time it is at distance xx from a fixed point on the line, the speed is given by v2=1449x2v^2=144-9x^2. Then:

হানি নাটস

Given:

θ2=1449x2θ=1449x2=9(16x2)316x2 \begin{aligned} \quad \theta^{2} & =144-9 x^{2} \\ \therefore \quad \theta & =\sqrt{144-9 x^{2}} \\ & =\sqrt{9\left(16-x^{2}\right)} \quad \Rightarrow 3 \sqrt{16-x^{2}} \end{aligned}

Comparing it with the velocity in Strm

v=ωA2x2 v=\omega \sqrt{A^{2}-x^{2}}

Comparing the equation with (1)

=3/s and, A2=16A=4 m \begin{aligned} \therefore & =3 / \mathrm{s} \\ \text { and, } A^{2} & =16 \quad \therefore A=4 \mathrm{~m} \end{aligned}

In SHM, displacement < < distance (as the particle passes mean position

- a correct making displacement =0 =0

Now

a=ω2x(a-accekration )w - angular frequency x-displacenent  at x=3 m,ω=3 s1a=(3)2(3)=27 m/s2a=27 m/s2 (b correct)  \begin{array}{l} a=-\omega^{2} x \quad(a \text {-accekration }) \\ w \text { - angular frequency } \\ x \text {-displacenent } \\ \therefore \text { at } x=3 \mathrm{~m}, \omega=3 \mathrm{~s}^{-1} \\ a=-(3)^{2}(3)=-27 \mathrm{~m} / \mathrm{s}^{2} \\ |a|=27 \mathrm{~m} / \mathrm{s}^{2} \text { (b correct) } \\ \end{array}

Now T=2π/ω2uˉ3 T=2 \pi / \omega \Rightarrow \frac{2 \bar{u}}{3} unit ( c c correct) The maximum displacement is une Amplitude =4 =4 mit.

(Hence d correct)

Hence all ine above are correct.

সরল দোলন গতি টপিকের ওপরে পরীক্ষা দাও