মাত্রা ও একক বিষয়ক
A force is given by F=at+bt2F = at + b{t^2}F=at+bt2, where ttt is time, the dimensions of aaa and bbb are respectively :
[MLT−4]\left[ {ML{T^{ - 4}}} \right][MLT−4] and [MLT−1]\left[ {ML{T^{ - 1}}} \right][MLT−1]
[MLT−1]\left[ {ML{T^{ - 1}}} \right][MLT−1] and [MLT0]\left[ {ML{T^0}} \right][MLT0]
[MLT−3]\left[ {ML{T^{ - 3}}} \right][MLT−3] and [MLT−4]\left[ {ML{T^{ - 4}}} \right][MLT−4]
[MLT−3]\left[ {ML{T^{ - 3}}} \right][MLT−3] and [MLT0]\left[ {ML{T^0}} \right][MLT0]
⇒ \Rightarrow \ ⇒ Since F=at+bt2−−−(1)F=at+bt^2---(1)F=at+bt2−−−(1)
∴\therefore ∴ Dimension of at atat and bt2bt^2bt2 must be equal to force only.
Hence [F]=[M1L1T−2]−−−(2)[F]=[M^{1} L^{1} T^{-2}]---(2)[F]=[M1L1T−2]−−−(2)
FFF from (1)(1)(1) and (2)(2)(2)
⇒ [at]=a[T]=[F]\Rightarrow \ [at]=a[T] =[F]⇒ [at]=a[T]=[F]
∴ a[T]=[M1L1T−2]\therefore \ a[T] =[M^{1} L^{1} T^{-2}]∴ a[T]=[M1L1T−2]
∴ [a]=[M1L1T−3]\therefore \ [a]=[M^{1} L^{1} T^{-3}]∴ [a]=[M1L1T−3]
and per bt2=b[T2]=[M1L1T−2]bt^2=b[T^{2}]=[M^{1} L^{1} T^{-2}]bt2=b[T2]=[M1L1T−2]
∴ [b]=[M1L1T−4]\therefore \ \boxed {[b]= [M^{1} L^{1} T^{-4}]}∴ [b]=[M1L1T−4]
নিচের কোনটি দুরত্বের একক নয়?
(P+aV2)(V−b)=RT \left ( P + \frac{a}{V^{2}} \right ) \left ( V - b \right ) = R T (P+V2a)(V−b)=RT সমীকরণটিতে a এর মাত্রা কত?
The dimensional formula for impulse is same as the dimensional
formula for
শূন্যে আলোর গতি হচ্ছে ......... meter/second .