সম্ভাবনার সাধারণ সমস্যা

A pair of fair dice is rolled together till a sum a either 5 or 7 is obtained. If p denoted the probability that 7 comes before 5, find 15p

কাজু বাদাম

Let A denote the event that a sum of 7 occurs, B the event that a sum of 5 occurs and C the event that neither a sum of 5 nor a sum of 7 occurs.
We have P(A)=636=16,P(B)=436=19,P(C)=2636=1318P(A)=\displaystyle \frac {6}{36}=\frac {1}{6}, P(B)=\frac {4}{36}=\frac {1}{9}, P(C)=\displaystyle \frac {26}{36}=\frac {13}{18}.
Thus,
p=P(Ap=P(A or (CA)(C\cap A) or (CCA)(C\cap C\cap A) or ....)....)
=P(A)+P(C)P(A)+P(C)2P(A)+....=P(A)+P(C)P(A)+P(C)^2P(A)+....
=P(A)1P(C)=1/6113/18=35=\displaystyle \frac {P(A)}{1-P(C)}=\frac {1/6}{1-13/18}=\frac {3}{5}.

সম্ভাবনার সাধারণ সমস্যা টপিকের ওপরে পরীক্ষা দাও