সরল দোলন গতি

A particle executing SHMSHM while moving from the one extremity is found at distance x1,x2x_1, x_2 and x3x_3 from the centre at the end of three successive seconds. The time period of oscillation is (θ) used in the following choices is given by cosθ=x1+x3/2x2

হানি নাটস

The correct option is A \mathbf{A}

2πθ \frac{2 \pi}{\theta}

x1=Acos(ω)x2=Acos(2ω)x3=Acos(3ω)x1+x3=2Acos(2ω)cosω=2Ax2x1AAx1A=x1+x2x12x2A \begin{array}{l} \mathrm{x}_{1}=A \cos (\omega) \\ \mathrm{x}_{2}=A \cos (2 \omega) \\ \mathrm{x}_{3}=A \cos (3 \omega) \\ \therefore \mathrm{x}_{1}+\mathrm{x}_{3}=2 A \cos (2 \omega) \cos \omega=2 A \frac{x_{2} x_{1}}{A A} \\ \Rightarrow \frac{x_{1}}{A}=\frac{x_{1}+x_{2} x_{1}}{2 x_{2} A} \end{array}

Hence T=2πω=2πθ T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\theta}

সরল দোলন গতি টপিকের ওপরে পরীক্ষা দাও