কনিক নির্ণয়

A point (α,β)(\alpha, \beta) lies on a circle x2+y2=1x^2+y^2=1, then locus of the point (3α+2β)(3\alpha +2\beta) is a//an.

হানি নাটস

Point will be (3α,2β)(3\alpha ,2\beta ) not (3α+2β)( 3\alpha +2\beta )
Now x2+y2=1 x^{2}+y^{2}=1
Radium is 11 unit,hence parametric co - ordinate is
(α,β)=(1cosθ,1sinθ)=(cosθ,sinθ)(\alpha ,\beta )= (1\cos\theta ,1\sin\theta )=(\cos\theta , \sin\theta )
Hence
Point is (3cosθ,2sinθ) (3\cos\theta ,2\sin\theta )
Hence
(x,y)=(3cosθ,2sinθ)(x,y)= (3\cos\theta ,2\sin\theta )
x=3cosθx=3\cos\theta
x3cosθ \Rightarrow \dfrac{x}{3}\cos\theta ...(i)
y=2sinθ y=2\sin\theta
y2=sinθ \Rightarrow \dfrac{y}{2} = \sin \theta ...(ii)
(i)2+(ii)2 (i)^{2} + (ii)^{2}
x29+y24cos2θ+sin2θ\dfrac{x^{2}}{9} + \dfrac{y^{2}}{4} \cos^{2}\theta + \sin^{2} \theta
x29+y24=1 \dfrac{x^{2}}{9}+ \dfrac{y^{2}}{4} = 1
which is equation of ellipse

কনিক নির্ণয় টপিকের ওপরে পরীক্ষা দাও