মান নির্ণয়
Choose the correct answer.
(1+tan2θ)sin2θ=(1+{ \tan }^{ 2 }\theta ){ \sin }^{ 2 }\theta =(1+tan2θ)sin2θ=
tan2θ{ \tan }^{ 2 }\theta tan2θ
cot2θ{ \cot }^{ 2 }\theta cot2θ
sin2θ{ \sin }^{ 2 }\theta sin2θ
cos2θ{ \cos }^{ 2 }\theta cos2θ
(1+tan2θ)⋅sin2θ=(1+sin2θcos2θ)⋅sin2θ=(cos2θ+sin2θcos2θ)⋅sin2θ=(1cos2θ)⋅sin2θ=sin2θcos2θ=tan2θ \begin{array}{l}\left(1+\tan ^{2} \theta\right) \cdot \sin ^{2} \theta=\left(1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right) \cdot \sin ^{2} \theta \\ =\left(\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}\right) \cdot \sin ^{2} \theta \\ =\left(\frac{1}{\cos ^{2} \theta}\right) \cdot \sin ^{2} \theta \\ =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\ =\tan ^{2} \theta\end{array} (1+tan2θ)⋅sin2θ=(1+cos2θsin2θ)⋅sin2θ=(cos2θcos2θ+sin2θ)⋅sin2θ=(cos2θ1)⋅sin2θ=cos2θsin2θ=tan2θ
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
1+tan25∘1−tan25∘= \frac{1+\tan 25^{\circ}}{1-\tan 25^{\circ}}= 1−tan25∘1+tan25∘= কত?
∣tanθ+secθ∣=∣tanθ∣+∣secθ∣,0≤θ≤2π|\tan\theta+\sec\theta|=|\tan\theta|+|\sec\theta|, 0\leq \theta \leq 2\pi∣tanθ+secθ∣=∣tanθ∣+∣secθ∣,0≤θ≤2π is possible only if-