উচ্চতর গণিত
Cocfficient of the term x11 x^{11} x11 in the expansion of (x4−1x3)8 \left(x^{4}-\frac{1}{x^{3}}\right)^{8} (x4−x31)8 will be-
48
54
56
60
-56
Solution: (c); Let (r+1)th (r+1)^{\text {th }} (r+1)th term of the expansion is x11 x^{11} x11
Then (r+1)th (r+1)^{\text {th }} (r+1)th term is, 8Cr(x4)8−r(−1)r1x3r { }^{8} C_{r}\left(x^{4}\right)^{8-r}(-1)^{r} \frac{1}{x^{3 r}} 8Cr(x4)8−r(−1)rx3r1
∴32−7r=11∴r=3∴ \therefore 32-7 r=11 \therefore r=3 \therefore ∴32−7r=11∴r=3∴ coefficient of x11=8C3(−1)3=−56 x^{11}={ }^{8} C_{3}(-1)^{3}=-56 x11=8C3(−1)3=−56