মান নির্ণয়
cos(2001)π+cot(2001)π2+sec(2001)π3+tan(2001)π4+cosec(2001)π6\cos (2001) \pi + \cot (2001)\dfrac {\pi}{2} + \sec (2001) \dfrac {\pi}{3} + \tan (2001) \dfrac {\pi}{4} + cosec (2001) \dfrac {\pi}{6}cos(2001)π+cot(2001)2π+sec(2001)3π+tan(2001)4π+cosec(2001)6π equal to
000
111
−2-2−2
Not defined
cos(2001)π+cot(2001)π2+sec(2001)π3+tan(2001)π4+cosec(2001)π6 \begin{array}{c}\cos (2001) \pi+\cot (2001) \frac{\pi}{2}+\sec (2001) \frac{\pi}{3} +\tan (2001) \frac{\pi}{4}+\operatorname{cosec}(2001) \frac{\pi}{6}\end{array} cos(2001)π+cot(2001)2π+sec(2001)3π+tan(2001)4π+cosec(2001)6π
cos(2001)π=cos(2000π+π)cos(2nπ+θ)=cosθ=cosπ=−1cot(2πn+θ)π2=0 \begin{array}{l}\cos (2001) \pi=\cos (2000 \pi+\pi) \\ \begin{aligned} \cos (2 n \pi+\theta) & =\cos \theta \\ & =\cos \pi \\ & =-1\end{aligned} \\ \cot (2 \pi n+\theta) \frac{\pi}{2}=0\end{array} cos(2001)π=cos(2000π+π)cos(2nπ+θ)=cosθ=cosπ=−1cot(2πn+θ)2π=0
এভাবে,
=cosπ+cotπ2+sec(667π)+tan(2000π+π4)+cosec(667π2) \begin{array}{c}=\cos \pi+\cot \frac{\pi}{2}+\sec (667 \pi)+\tan \left(2000 \pi+\frac{\pi}{4}\right) +\operatorname{cosec}\left(667 \frac{\pi}{2}\right)\end{array} =cosπ+cot2π+sec(667π)+tan(2000π+4π)+cosec(6672π)
=−1+0+(−1)+1+cosec(666π2+π2)=−1−1+1−1=−2 \begin{array}{l}=-1+0+(-1)+1+\operatorname{cosec}\left(666 \frac{\pi}{2}+\frac{\pi}{2}\right) \\ =-1-1+1-1 \\ =-2\end{array} =−1+0+(−1)+1+cosec(6662π+2π)=−1−1+1−1=−2
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
1+tan25∘1−tan25∘= \frac{1+\tan 25^{\circ}}{1-\tan 25^{\circ}}= 1−tan25∘1+tan25∘= কত?
4sin712∘cos712∘cos15∘= 4 \sin 7 \frac{1}{2}^{\circ} \cos 7 \frac{1}{2}^{\circ} \cos 15^{\circ}= 4sin721∘cos721∘cos15∘= কত?
In the given figure, ∠B=90∘\displaystyle \angle B =90^{\circ}∠B=90∘ and ∠ADB=x∘\displaystyle \angle ADB=x^{\circ}∠ADB=x∘, then find
cos2C∘+sin2C∘\displaystyle \cos^{2} C^{\circ}+\sin^{2} C^{\circ} cos2C∘+sin2C∘.