মান নির্ণয়
cos2(A−120∘)+cos2A+cos2(A+120∘)=? \cos ^{2}\left(A-120^{\circ}\right)+\cos ^{2} A +\cos ^{2}\left(A+120^{\circ}\right) = ? cos2(A−120∘)+cos2A+cos2(A+120∘)=?
−32-\frac{3}{2}−23
34\frac{3}{4}43
32\frac{3}{2}23
12\frac{1}{2}21
Solve:cos2(A−120∘)+cos2A+cos2(A+120∘)=12{1+cos2(A−120∘)+1+cos2A+1+cos2(AA+120∘)}=12{3+cos(2A−240∘)+cos(2A+240∘)+cos2A}=12{3+2cos2Acos240∘+cos2A} \begin{array}{l} \cos ^{2}\left(A-120^{\circ}\right)+\cos ^{2} A +\cos ^{2}\left(A+120^{\circ}\right) \\ =\frac{1}{2}\left\{1+\cos 2\left(A-120^{\circ}\right)+1+\cos 2 A+1\right. \\ \left.+\cos 2\left(A^{A}+120^{\circ}\right)\right\} \\ =\frac{1}{2}\left\{3+\cos \left(2 A-240^{\circ}\right)\right. \\ \left.+\cos \left(2 A+240^{\circ}\right)+\cos 2 A\right\} \\ =\frac{1}{2}\left\{3+2 \cos 2 A \cos 240^{\circ}+\cos 2 A\right\} \end{array} cos2(A−120∘)+cos2A+cos2(A+120∘)=21{1+cos2(A−120∘)+1+cos2A+1+cos2(AA+120∘)}=21{3+cos(2A−240∘)+cos(2A+240∘)+cos2A}=21{3+2cos2Acos240∘+cos2A}
=12{3+2cos2Acos(180∘+60∘)+cos2A}=12{3+2cos2A(−cos60∘)+cos2A}=12{3+2⋅cos2A(−12)+cos2A}=12(3−cos2A+cos2A)=32 \begin{array}{l} =\frac{1}{2}\left\{3+2 \cos 2 A \cos \left(180^{\circ}+60^{\circ}\right)+\cos 2 A\right\} \\ =\frac{1}{2}\left\{3+2 \cos 2 A\left(-\cos 60^{\circ}\right)+\cos 2 A\right\} \\ =\frac{1}{2}\left\{3+2 \cdot \cos 2 A\left(-\frac{1}{2}\right)+\cos 2 A\right\} \\ =\frac{1}{2}(3-\cos 2 A+\cos 2 A)=\frac{3}{2} \end{array} =21{3+2cos2Acos(180∘+60∘)+cos2A}=21{3+2cos2A(−cos60∘)+cos2A}=21{3+2⋅cos2A(−21)+cos2A}=21(3−cos2A+cos2A)=23
tanθ=p হলে, cos2θ= কত? \tan \theta=p \text { হলে, } \cos 2 \theta=\text { কত? } tanθ=p হলে, cos2θ= কত?
যদি π2<θ<πএবংsinθ=35হয়, \frac{\pi}{2} < \theta < \pi এ ব ং \sin{\theta} = \frac{3}{5} হ য় , 2π<θ<πএবংsinθ=53হয়, তবে cosθ এর মান কত?
tan105∘=tan(60∘+45∘)\tan 105^{\circ}=\tan \left(60^{\circ}+45^{\circ}\right)tan105∘=tan(60∘+45∘) এর মান কত?
If cosθ=513\displaystyle \cos \theta =\frac{5}{13}cosθ=135, where θ\theta θ being an acute angle, then the value of cosθ+5cotθcosec θ−cosθ\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }cosec θ−cosθcosθ+5cotθ will be