ত্রিকোণমিতিক সূত্রাবলি ও ত্রিভুজের সূত্রাবলী

cos(36θ)cos(36+θ)+cos(54+θ)cos(54θ)=? \cos \left(36^{\circ}-\theta\right) \cos \left(36^{\circ}+\theta\right)+ \cos \left(54^{\circ}+\theta\right) \cos \left(54^{\circ}-\theta\right)= ?

Solve:cos(36θ)cos(36+θ)+cos(54+θ)cos(54θ)=12(cos72+cos2θ)+12(cos108+cos2θ)=12{cos(9018)+cos2θ}+12{cos(90+18)+cos2θ}=12(cos2θ+cos18) \begin{array}{l} \cos \left(36^{\circ}-\theta\right) \cos \left(36^{\circ}+\theta\right)+ \\ \cos \left(54^{\circ}+\theta\right) \cos \left(54^{\circ}-\theta\right) \\ =\frac{1}{2}\left(\cos 72^{\circ}+\cos 2 \theta\right)+\frac{1}{2}\left(\cos 108^{\circ}+\cos 2 \theta\right) \\ =\frac{1}{2}\left\{\cos \left(90^{\circ}-18^{\circ}\right)+\cos 2 \theta\right\}+ \\ \frac{1}{2}\left\{\cos \left(90^{\circ}+18^{\circ}\right)+\cos 2 \theta\right\} \\ =\frac{1}{2}\left(\cos 2 \theta+\cos 18^{\circ}\right) \end{array}

+12(cos2θcos18)=12(cos2θ+cos18+cos2θcos18)=122cos2θ=cos2θ= R.H.S. (Proved)  \begin{array}{r} +\frac{1}{2}\left(\cos 2 \theta-\cos 18^{\circ}\right) \\ =\frac{1}{2}\left(\cos 2 \theta+\cos 18^{\circ}+\cos 2 \theta-\cos 18^{\circ}\right) \\ =\frac{1}{2} \cdot 2 \cos 2 \theta=\cos 2 \theta=\text { R.H.S. (Proved) } \end{array}

ত্রিকোণমিতিক সূত্রাবলি ও ত্রিভুজের সূত্রাবলী টপিকের ওপরে পরীক্ষা দাও